Commit b661df25 authored by liangjing's avatar liangjing
Browse files

update

parent 65b96f6c
......@@ -12,26 +12,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:20.06-py3
FROM ${FROM_IMAGE_NAME}
FROM=image.sourcefind.cn:5000/dcu/admin/base/custom:mlperf-resnet50-mpirun-latest
# Install dependencies for system configuration logger
RUN apt-get update \
&& apt-get install -y --no-install-recommends \
infiniband-diags \
pciutils \
&& rm -rf /var/lib/apt/lists/*
# Install Python dependencies
WORKDIR /workspace/object_detection
COPY requirements.txt .
RUN pip install --no-cache-dir https://github.com/mlperf/logging/archive/9ea0afa.zip \
&& pip install --no-cache-dir -r requirements.txt
# Copy detectron code and build
COPY . .
RUN pip install -e .
RUN /opt/conda/bin/conda install -y numpy==1.17.4
ENV OMP_NUM_THREADS=1
ENV OPENCV_FOR_THREADS_NUM=1
......@@ -29,6 +29,8 @@ MaskRCNN通过使用RoI Align算法和Mask Head网络来实现像素级别的物
## 环境配置
**Docker (方法一)**
提供[光源](https://www.sourcefind.cn/#/service-details)拉取的训练的docker镜像:
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:mlperf-maskrcnn-latest
......@@ -37,6 +39,14 @@ MaskRCNN通过使用RoI Align算法和Mask Head网络来实现像素级别的物
# <Container Path>容器映射路径
docker run -it --name mlperf_maskrcnn --shm-size=32G --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v <Host Path>:<Container Path> <Image ID> /bin/bash
**Dockerfile (方法二)**
docker build --no-cache -t mlperf_maskrcnn:latest
docker run -it --name mlperf_maskrcnn --shm-size=32G --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v <Host Path>:<Container Path> <Image ID> /bin/bash
# <Image ID>用上面拉取docker镜像的ID替换
# <Host Path>主机端路径
# <Container Path>容器映射路径
镜像版本依赖:
* DTK驱动:dtk22.10
......@@ -74,6 +84,25 @@ COCO数据集的广泛使用使得其成为计算机视觉领域中的一个标
#To speed up loading of coco annotations during training, the annotations can be pickled since #unpickling is faster than loading a json.
python3 pickle_coco_annotations.py --root <path/to/detectron2/dataset/dir> --ann_file <path/to/coco/annotation/file> --pickle_output_file <path/to/pickled/output/file>
数据集的目录结构如下:
```
├── images
│ ├── train2017
│ ├── val2017
│ ├── test2017
├── labels
│ ├── train2017
│ ├── val2017
├── annotations
│ ├── instances_val2017.json
├── LICENSE
├── README.txt
├── test-dev2017.txt
├── train2017.txt
├── val2017.txt
```
## 训练
### 单机8卡
......@@ -110,7 +139,7 @@ bash sbatch.sh
## 源码仓库及问题反馈
* https://developer.hpccube.com/codes/modelzoo/mlperf_maskrcnn_pytorch
## 参考
## 参考资料
* https://mlcommons.org/en/
* https://github.com/mlcommons
* https://github.com/mlcommons/training_results_v0.7/tree/master/NVIDIA/benchmarks/maskrcnn/implementations/pytorch
......@@ -5,7 +5,7 @@ modelName=mlperf_maskrcnn_pytorch
# 模型描述
modelDescription=MaskRCNN是一种基于Faster R-CNN的物体检测和实例分割模型
# 应用场景
appScenario=训练,CV,零售,广媒,医疗,交通
appScenario=训练,图像分类,零售,广媒,医疗,交通
# 框架类型
frameType=PyTorch
result.png

51.6 KB | W: | H:

result.png

184 KB | W: | H:

result.png
result.png
result.png
result.png
  • 2-up
  • Swipe
  • Onion skin
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment