init_env.py 11.3 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from mpi4py import MPI
import numpy as np
import time
import paddle
from pybind.functions import process_allgathered_inputs as process_bert_inputs
from pybind.functions import process_eval_inputs as process_bert_eval_inputs
import h5py
import random

global_comm = MPI.COMM_WORLD
global_rank = global_comm.rank
global_world_size = global_comm.size
assert global_world_size % 2 == 0


def create_group_comm(ranks):
    ranks = list(ranks)
    new_group = global_comm.group.Incl(ranks)
    new_comm = global_comm.Create_group(new_group)
    return new_comm


def generate_seeds(rng, size):
    """
    Generate list of random seeds

    :param rng: random number generator
    :param size: length of the returned list
    """
    seeds = [rng.randint(0, 2**32 - 1) for _ in range(size)]
    return seeds


def broadcast_seeds(comm, seeds, root=0):
    seeds = np.array(seeds).astype(np.int64)
    comm.Bcast(seeds, root=root)
    return seeds.tolist()


def select_dataset_file_for_each_worker(files, f_start_id, worker_num,
                                        worker_index):
    """
    Spliting the train file according to the worker index.
    """
    num_files = len(files)
    if worker_num > num_files:
        remainder = worker_num % num_files
        data_file = files[(
            f_start_id * worker_num + worker_index + remainder * f_start_id) %
                          num_files]
    else:
        data_file = files[(f_start_id * worker_num + worker_index) % num_files]
    # limin-todo: 
    #data_file = "/data2/zengjinle/dataset/bert_data/hdf5/training-4320/hdf5_4320_shards_uncompressed/part_01799_of_04320.hdf5"
    #print("data_file: ", data_file)
    return data_file


def read_hdf5_file(input_file, dtype=np.int16):
    keys = [
        'input_ids',
        'input_mask',
        'segment_ids',
        'masked_lm_positions',
        'masked_lm_ids',
        'next_sentence_labels',
    ]
    if not os.path.exists(input_file):
        return None
    with h5py.File(input_file, 'r') as f:
        outputs = [np.array(f[key], dtype=dtype) for key in keys]
        n = outputs[0].shape[0]
        masked_lm_labels = np.zeros(outputs[0].shape, dtype=dtype)
        lengths = np.zeros(n, dtype=dtype)
        for i in range(n):
            masked_lm_positions = outputs[3][i]
            masked_lm_ids = outputs[4][i]
            length = np.count_nonzero(masked_lm_positions)
            masked_lm_labels[i][
                masked_lm_positions[:length]] = masked_lm_ids[:length]
            lengths[i] = np.count_nonzero(outputs[1][i])
        outputs = [
            outputs[0], outputs[2], outputs[1], masked_lm_labels, outputs[-1],
            lengths
        ]
        idx = np.random.choice(np.arange(n), n, replace=False)
        for i in range(len(outputs)):
            outputs[i] = outputs[i][idx]
    return outputs


def read_eval_hdf5_file(input_file, dtype=np.int16):
    keys = [
        'input_ids',
        'input_mask',
        'segment_ids',
        'masked_lm_positions',
        'masked_lm_ids',
        'next_sentence_labels',
    ]
    if not os.path.exists(input_file):
        return None
    with h5py.File(input_file, 'r') as f:
        outputs = [np.asarray(f[key][:]) for key in keys]
        nsamples = outputs[0].shape[0]

        all_data = []
        for index in range(nsamples):
            [
                input_ids, input_mask, segment_ids, masked_lm_positions,
                masked_lm_ids, next_sentence_labels
            ] = [
                input[index].astype(dtype)
                if indice < 5 else np.asarray(input[index].astype(dtype))
                for indice, input in enumerate(outputs)
            ]

            length = np.count_nonzero(masked_lm_positions)
            masked_lm_positions = masked_lm_positions[:length]
            masked_lm_ids = masked_lm_ids[:length]

            masked_lm_labels = np.zeros(input_ids.shape, dtype=dtype)
            masked_lm_labels[masked_lm_positions] = masked_lm_ids

            #if index == 0:
            #    print("masked_lm_labels = ", masked_lm_labels)
            #    print("masked_lm_positions = ", masked_lm_positions)
            #    print("masked_lm_ids = ", masked_lm_ids)
            seq_len = np.asarray(np.count_nonzero(input_mask))

            data = [
                input_ids,
                segment_ids,
                input_mask,
                masked_lm_labels,
                next_sentence_labels,
                seq_len,
            ]
            # (2050, ), i.e., 512 * 4 + 1 + 1
            one_sample_data = np.concatenate([d.flatten() for d in data])

            all_data.extend(one_sample_data)

        # (2050000, ) -> (10000, 2050)
    return np.asarray(all_data).reshape((nsamples, -1))


class WorkerInitObj(object):
    "Construct the object with different seed, and the Dataloader will generate the data "
    "with different seed in each worker."

    def __init__(self, seed):
        self.seed = seed

    def __call__(self, id):
        np.random.seed(seed=self.seed + id)
        random.seed(self.seed + id)


class Context:
    def __init__(self):
        half_size = int(global_world_size / 2)
        self.trainer_id = global_rank % half_size
        self.trainer_num = half_size
        self.is_trainer = (global_rank < half_size)

        self.reader_id = self.trainer_id
        self.reader_num = self.trainer_num
        self.is_reader = not self.is_trainer

        self.trainer_comm = create_group_comm(range(0, half_size))
        self.reader_comm = create_group_comm(
            range(half_size, global_world_size))
        self.trainer_reader_comm = create_group_comm(
            [self.trainer_id, self.trainer_id + half_size])
        self.global_comm = global_comm

    def init_args(self, args, dtype=np.int16):
        self.args = args
        self.files = [
            os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir)
            if os.path.isfile(os.path.join(args.input_dir, f)) and "part" in f
        ]
        self.files.sort()
        self.fid_buf = np.array([1], dtype=np.int64)
        with h5py.File(self.files[0], 'r') as f:
            self.num_samples = np.array(f["next_sentence_labels"][:]).size

        self.batch_size = args.train_batch_size
        self.max_seq_length = args.max_seq_length
        self.worker_seeds, self.shuffling_seeds = self._setup_seeds(
            args.seed, args.num_epochs_to_generate_seeds_for)
        self.epoch_idx = 0

        data_buf_size = self.num_samples * 4 * self.max_seq_length + self.num_samples * 2
        self.data_buf = np.empty(
            shape=[self.trainer_num * data_buf_size], dtype=dtype)

        self.eval_dir = args.eval_dir
        self.num_eval_examples = args.num_eval_examples
        self.eval_batch_size = args.eval_batch_size

        cur_seed = self.worker_seeds[self.trainer_id]
        np.random.seed(cur_seed)
        random.seed(cur_seed)
        paddle.seed(cur_seed)
        self.worker_init = WorkerInitObj(cur_seed)
        self.barrier()

    def shuffle_files(self):
        random.Random(self.shuffling_seeds[self.epoch_idx]).shuffle(self.files)
        self.epoch_idx += 1

    def _setup_seeds(self, master_seed, epochs):
        if master_seed is None:
            master_seed = random.SystemRandom().randint(0, 2**32 - 1)
            if self.trainer_id == 0:
                print('Using random master seed: {}'.format(master_seed))
        else:
            print('Using master seed from command line: {}'.format(master_seed))

        # initialize seeding RNG
        seeding_rng = random.Random(master_seed)

        # generate worker seeds, one seed for every distributed worker
        worker_seeds = generate_seeds(seeding_rng, self.trainer_num)

        # generate seeds for data shuffling, one seed for every epoch
        shuffling_seeds = generate_seeds(seeding_rng, epochs)

        worker_seeds = broadcast_seeds(self.global_comm, worker_seeds)
        shuffling_seeds = broadcast_seeds(self.global_comm, shuffling_seeds)
        return worker_seeds, shuffling_seeds

    def worker_seed(self):
        return self.worker_seeds[self.trainer_id]

    def barrier(self):
        self.global_comm.barrier()

    def stop_reader(self):
        if self.is_trainer:
            self.read_file(-1)

    def file_num(self):
        return len(self.files)

    def read_file(self, f_id=None):
        if self.is_trainer:
            self.fid_buf[0] = f_id
            self.trainer_reader_comm.Isend(self.fid_buf, dest=1)
            if f_id == 0:
                self.shuffle_files()
            elif f_id < 0:
                return

            self.trainer_reader_comm.Recv(self.data_buf, source=1)
            results = process_bert_inputs(self.data_buf, self.num_samples,
                                          self.max_seq_length, self.batch_size,
                                          self.trainer_id, self.trainer_num)

            return results
        else:
            self.trainer_reader_comm.Recv(self.fid_buf, 0)
            f_id = self.fid_buf[0]
            if f_id == 0:
                self.shuffle_files()
            elif f_id < 0:
                return False

            fname = select_dataset_file_for_each_worker(
                self.files, f_id, self.trainer_num, self.trainer_id)
            data = read_hdf5_file(fname, dtype=self.data_buf.dtype)
            send_buf = np.concatenate([d.flatten() for d in data])
            self.reader_comm.Allgather(send_buf, self.data_buf)
            self.trainer_reader_comm.Send(self.data_buf, dest=0)
            return True

    def read_eval_file(self):
        if self.is_trainer:

            eval_data = []
            for eval_file in sorted(os.listdir(self.eval_dir)):
                eval_file_path = os.path.join(self.eval_dir, eval_file)
                if os.path.isfile(eval_file_path) and 'part' in eval_file_path:
                    data = read_eval_hdf5_file(
                        eval_file_path, dtype=self.data_buf.dtype)
                    eval_data.extend(data)
                    if len(eval_data) > self.num_eval_examples:
                        break

            chunk_size = self.num_eval_examples // self.trainer_num
            rank = self.trainer_id
            remainder = self.num_eval_examples % self.trainer_num
            if rank < remainder:
                eval_data = eval_data[(chunk_size + 1) * rank:(chunk_size + 1) *
                                      (rank + 1)]
            else:
                eval_data = eval_data[chunk_size * rank + remainder:chunk_size *
                                      (rank + 1) + remainder]

            results = process_bert_eval_inputs(eval_data, self.max_seq_length,
                                               self.eval_batch_size,
                                               self.args.sort_eval_data)
            return results


_context = Context()


def get_context():
    return _context