run_pretrain_fp32.py 46 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from init_env import get_context

context = get_context()
num_trainers = None
trainer_id = None

import argparse
import collections
import itertools
import math
import os
import random
import time
import h5py
import json
import distutils.util
from functools import partial
from concurrent.futures import ThreadPoolExecutor
from mlperf_logging.mllog import constants
import paddle.fluid.profiler as profiler
#from mlperf_logging_helper import paddle_bert_print_start, paddle_bert_print_end, paddle_bert_print_event
from models.mlperf_logging_helper import paddle_bert_print_start, paddle_bert_print_end, paddle_bert_print_event

import numpy as np

if context.is_trainer:
    import utility
    import dataset
    import models
    import paddle
    import paddle.fluid.core as core
    import paddle.distributed.fleet as fleet
    from paddle.fluid.clip import _allow_pure_fp16_global_norm_clip
    from paddle.fluid.contrib.mixed_precision.fp16_utils import _keep_layer_norm_scale_bias_to_fp32
    from paddle.io import DataLoader, Dataset
    from paddle.fluid.layer_helper import LayerHelper

    from models.modeling import BertForPretraining, BertModel, BertPretrainingCriterion
    from models.modeling import BertConfig
    from models.optimization import LinearWarmupPolyDecayScheduler
    from dataset import create_data_holder, create_pretraining_dataset, create_cpu_exchange_padding_pretraining_dataset, create_new_eval_dataset

    try:
        from paddle.incubate.optimizer import DistributedFusedLamb
    except ImportError:
        print('DistributedFusedLamb import error')

    try:
        from custom_setup_ops import custom_lr
    except ImportError as e:
        print('custom_setup_ops import error: {}'.format(e))
import pdb

def append_lr_op(base_lr,
                 max_step,
                 startup_warmup_step=0,
                 warmup_step=0,
                 end_lr=0.0,
                 degree=1.0):
    helper = LayerHelper('lr_op')
    step_var = paddle.fluid.layers.create_global_var(
        shape=[1], value=0, dtype='int64', persistable=True)
    lr_var = helper.create_variable_for_type_inference(dtype=np.float32)
    helper.append_op(
        type='custom_lr',
        inputs={'X': [step_var]},
        outputs={'Out': [lr_var]},
        attrs={
            'base_lr': base_lr,
            'end_lr': end_lr,
            'degree': degree,
            'start_warmup_step': startup_warmup_step,
            'warmup_step': warmup_step,
            'max_step': max_step
        })
    return lr_var, step_var


def append_acc_merge_op(eval_program, acc, total):
    block = eval_program.global_block()
    acc = block.vars.get(acc.name)
    total = block.vars.get(total.name)
    startup_program = paddle.static.Program()
    with paddle.static.program_guard(eval_program, startup_program):
        acc_step = paddle.static.create_global_var(
            name="eval_step",
            shape=[2],
            value=0,
            dtype=paddle.int64,
            persistable=True,
            force_cpu=True)
        acc_out = paddle.static.create_global_var(
            name="eval_acc",
            shape=[2],
            value=0,
            dtype=paddle.float64,
            persistable=True)
        helper = LayerHelper('acc_merge_op')
        helper.append_op(
            type='acc_merge',
            inputs={'Acc': [acc],
                    'Total': [total]},
            outputs={'Out': [acc_out],
                     'Step': [acc_step]})
    scope = utility.get_scope()
    t = scope.var(acc_step.name).get_tensor()
    set_eval_step_func = lambda v: t.set(np.array([0, v], dtype=np.int64), paddle.CPUPlace())
    set_eval_step_func(0)
    return [acc_out], set_eval_step_func


def save_env(local_file):
    with open(local_file, "w") as f:
        f.write(json.dumps(dict(os.environ), sort_keys=True, indent=2))


def print_flags():
    print(json.dumps(dict(core.globals()), sort_keys=True, indent=2))


def initial_loss_scale():
    return float(os.getenv("INIT_LOSS_SCALE", 2**20))


def str2bool(s):
    return True if distutils.util.strtobool(s) else False


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_dir",
        default=None,
        type=str,
        required=True,
        help="The input directory where the data will be read from.", )
    parser.add_argument(
        "--eval_dir",
        default=None,
        type=str,
        help="The eval data dir. Should contain .hdf5 files  for the task.")
    parser.add_argument(
        "--num_eval_examples",
        default=10000,
        type=int,
        help="number of eval examples to run eval on")
    parser.add_argument(
        "--max_predictions_per_seq",
        default=80,
        type=int,
        help="The maximum total of masked tokens in input sequence")

    parser.add_argument(
        "--train_batch_size",
        default=8,
        type=int,
        help="Batch size per GPU/CPU for training.", )
    parser.add_argument(
        "--eval_batch_size",
        default=8,
        type=int,
        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        "--learning_rate",
        default=5e-5,
        type=float,
        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--weight_decay_rate",
        default=0.01,
        type=float,
        help="Weight decay if we apply some.")
    parser.add_argument(
        "--lamb_epsilon",
        default=1e-6,
        type=float,
        help="Epsilon for Adam optimizer.")
    parser.add_argument(
        "--opt_lamb_beta_1", default=0.9, type=float, help="LAMB beta1.")
    parser.add_argument(
        "--opt_lamb_beta_2", default=0.999, type=float, help="LAMB beta2.")
    parser.add_argument(
        "--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument(
        "--warmup_proportion",
        default=0.0,
        type=float,
        help="Linear warmup step proportion.")
    parser.add_argument(
        "--start_warmup_step",
        default=0,
        type=int,
        help="The default start warmup steps.")
    parser.add_argument(
        "--warmup_steps",
        default=0,
        type=int,
        help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--log_freq", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument(
        "--seed", type=int, default=42, help="Random seed for initialization")
    parser.add_argument(
        "--use_amp",
        type=str2bool,
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--enable_addto",
        type=str2bool,
        default=False,
        help="Whether to enable the addto strategy.")
    parser.add_argument(
        "--use_pure_fp16",
        type=str2bool,
        default=False,
        help="Whether to use pure fp16 training.")
    parser.add_argument(
        "--device",
        type=str,
        default="gpu",
        help="Device for selecting for the training.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of merge steps before gradient update."
        "global_batch_size = gradient_accumulation_steps * batch_size.")
    parser.add_argument(
        "--tf_ckpt_path",
        type=str,
        default=None,
        help="The pickled checkpoint path of TensorFlow.")
    parser.add_argument(
        "--bert_config_path",
        type=str,
        default=None,
        help="The bert config path.")
    parser.add_argument(
        "--unpad",
        type=str2bool,
        default=False,
        help="Whether to use unpad optimization.")
    parser.add_argument(
        "--pad",
        type=str2bool,
        default=False,
        help="Whether to use pad optimization.")
    parser.add_argument(
        "--unpad_fmha",
        type=str2bool,
        default=False,
        help="Whether to use unpad_fmha optimization.")
    parser.add_argument(
        "--unpad_fmha_mke_opt",
        type=str2bool,
        default=False,
        help="Whether to use unpad_fmha_mke_opt optimization.")
    parser.add_argument(
        "--pad_fmha",
        type=str2bool,
        default=False,
        help="Whether to use pad_fmha optimization.")
    parser.add_argument(
        "--fused_bias_mha",
        type=str2bool,
        default=False,
        help="Whether to use fused_bias_mha optimization.")
    parser.add_argument(
        "--fused_bias_fc",
        type=str2bool,
        default=False,
        help="Whether to use fused_bias_fc optimization.")
    parser.add_argument(
        "--fused_dropout_add_ln",
        type=str2bool,
        default=False,
        help="Whether to use fused_dropout_add_ln optimization.")
    parser.add_argument(
        "--weight_transpose",
        type=str2bool,
        default=False,
        help="Whether the weight of linear is stored in tranpose format.")
    parser.add_argument(
        "--max_seq_length", type=int, default=512, help="The max seq length.")
    parser.add_argument(
        "--batch_size", type=int, default=56, help="The batch size.")
    parser.add_argument(
        "--num_epochs_to_generate_seeds_for",
        type=int,
        default=2,
        help="Number of epochs to plan seeds for. Same set across all workers.")
    parser.add_argument(
        "--distributed_lamb",
        type=str2bool,
        default=False,
        help="Whether to use distributed LAMB optimizer.")
    parser.add_argument(
        "--exchange_padding",
        type=str2bool,
        default=False,
        help="Whether to exchange padding across devices.")
    parser.add_argument(
        "--cpu_exchange_padding",
        type=str2bool,
        default=False,
        help="Whether to use CPU to do exchange padding.")
    parser.add_argument(
        "--target_mlm_accuracy",
        type=float,
        default=0.72,
        help="The target mlm accuracy to be coveraged.")
    parser.add_argument(
        "--max_samples_termination",
        type=int,
        default=4500000,
        help="The max samples threshold to terminate the training process.")
    parser.add_argument(
        "--use_uncompressed_dataset",
        type=str2bool,
        default=False,
        help="Whether to use the uncompressed dataset.")
    parser.add_argument(
        "--dense_seq_output",
        type=str2bool,
        default=False,
        help="Whether to use the dense_seq_output optimization.")
    parser.add_argument(
        "--unpad_embed",
        type=str2bool,
        default=False,
        help="Whether to use unpad_embed optimization.")
    parser.add_argument(
        "--sort_eval_data",
        type=str2bool,
        default=False,
        help="Whether to sort the eval data.")
    args = parser.parse_args()
    return args


'''
def select_dataset_file_for_each_worker(files, f_start_id, worker_num,
                                        worker_index):
    """  
    Spliting the train file according to the worker index.
    """
    num_files = len(files)
    if worker_num > num_files:
        remainder = worker_num % num_files
        data_file = files[(
            f_start_id * worker_num + worker_index + remainder * f_start_id) %
                          num_files]
    else:
        data_file = files[(f_start_id * worker_num + worker_index) % num_files]
    return data_file
'''


def create_strategy(args):
    """
    Create build strategy and exec strategy.
    """
    build_strategy = paddle.static.BuildStrategy()
    exec_strategy = paddle.static.ExecutionStrategy()

    build_strategy.enable_addto = args.enable_addto
    build_strategy.allow_cuda_graph_capture = False
    if args.distributed_lamb:
        build_strategy.fuse_all_reduce_ops = False
        build_strategy.reduce_strategy = paddle.static.BuildStrategy.ReduceStrategy._NoReduce
    else:
        build_strategy.fuse_all_reduce_ops = True
        build_strategy.reduce_strategy = paddle.static.BuildStrategy.ReduceStrategy.AllReduce

    #build_strategy.fuse_gemm_epilogue = True
    build_strategy.fix_op_run_order = True
    exec_strategy.num_threads = 1
    exec_strategy.num_iteration_per_drop_scope = 10000
    return build_strategy, exec_strategy


def dist_optimizer(args, optimizer):
    """
    Create a distributed optimizer based on a normal optimizer
    """
    build_strategy, exec_strategy = create_strategy(args)

    dist_strategy = fleet.DistributedStrategy()
    if args.distributed_lamb:
        dist_strategy.gradient_scale_configs = {'scale_strategy': 'sum'}
    dist_strategy.execution_strategy = exec_strategy
    dist_strategy.build_strategy = build_strategy
    if args.distributed_lamb:
        dist_strategy.fuse_all_reduce_ops = False
    else:
        dist_strategy.fuse_all_reduce_ops = True

    dist_strategy.fuse_grad_size_in_MB = 0
    if args.use_amp:
        dist_strategy.amp = True
        custom_white_list = [
          # 'softmax',
          # 'softmax_grad',
          # 'softmax_with_cross_entropy',
          # 'softmax_with_cross_entropy_grad',
          #  'reduce_sum',
          #  'reduce_sum_grad',
        ]

        custom_black_list = [
            'arg_max',
            'concat',
            'cumsum',
            'dropout',
            'dropout_grad',
            'elementwise_add',
            'elementwise_add_grad',
            'elementwise_div',
            'elementwise_div_grad',
            'elementwise_max',
            'elementwise_mul',
            'elementwise_mul_grad',
            'elementwise_sub',
            'fill_any_like',
            'fill_constant',
            'gather',
            'gather_grad',
            'gelu',
            'gelu_grad',
            'lamb',
            'layer_norm',
            'layer_norm_grad',
            'lookup_table_v2',
            'lookup_table_v2_grad',
            'matmul',
            'matmul_grad',
            'matmul_v2',
            'matmul_v2_grad',
            'reduce_any',
            'reduce_sum',
             'reduce_sum_grad',
            'reshape2',
            'reshape2_grad',
            'scatter',
            'scatter_grad',
            'slice',
            'slice_grad',
            'softmax',
            'softmax_grad',
            'softmax_with_cross_entropy',
            'softmax_with_cross_entropy_grad',
            'sqrt',
            'square',
            'sum',
            'tanh',
            'tanh_grad',
            'transpose2',
            'custom_fmha',
            'custom_fmha_grad',
            'custom_fused_dropout_residual_ln',
            'custom_fused_dropout_residual_ln_grad',
            'custom_fused_dense',
            'custom_fused_dense_grad',
            'reduce_mean_grad',
            'reduce_mean',
          #  'reduce_sum',
          #  'reduce_sum_grad',
            'cast',
            'uniform_random',
            'dropout',
            'scale',
            'unsqueeze2',
            'index_select',
        ]

        dist_strategy.amp_configs = {
            'custom_white_list': custom_white_list,
            'custom_black_list': custom_black_list,
            'init_loss_scaling': initial_loss_scale(),
            'incr_every_n_steps': 2000,
            'decr_every_n_nan_or_inf': 1,
            'incr_ratio': 2.0,
            'decr_ratio': 0.5,
            'use_dynamic_loss_scaling': True,
            'use_pure_fp16': args.use_pure_fp16,
            'use_fp16_guard': args.use_pure_fp16,
        }
    optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)
    return optimizer


def prune_exchange_padding_op(eval_program):
    ops = eval_program.global_block().ops
    assert ops[0].type == "sort_bert_inputs_across_devices"
    eval_program.global_block()._remove_op(0)
    eval_program._sync_with_cpp()


def do_eval(exe, eval_program, eval_dataloader, eval_dataloader_cpu_tensor,
            fetch_list):
    acc = None 
    n = len(eval_dataloader)
    for i, batch in enumerate(eval_dataloader):
        batch[0]['host_prefix_sum_seq_len'] = eval_dataloader_cpu_tensor[i][0]
        if i + 1 == n:
            acc = exe.run(eval_program, feed=batch, fetch_list=fetch_list)[0]
        else:
            exe.run(eval_program, feed=batch)

    if num_trainers > 1:
        accl = np.empty(
            shape=[2],dtype=np.float64)
        context.trainer_comm.Allreduce(acc, accl)
    return accl[0] / accl[1]


def get_found_nan_inf_flag_var(prog):
    flag_var = None
    for op in prog.global_block().ops:
        if op.type == "update_loss_scaling":
            cur_flag_var = op.input("FoundInfinite")
            assert len(cur_flag_var) == 1
            cur_flag_var = cur_flag_var[0]
            if flag_var is None:
                flag_var = cur_flag_var
                flag_var = prog.global_block().vars.get(flag_var)
                assert flag_var is not None
            else:
                assert flag_var.name == cur_flag_var
    return flag_var


def get_global_step_var(prog):
    flag_var = None
    for op in prog.global_block().ops:
        if op.type == "distributed_fused_lamb":
            cur_flag_var = op.output("Step")
            assert len(cur_flag_var) == 1
            cur_flag_var = cur_flag_var[0]
            if flag_var is None:
                flag_var = cur_flag_var
                flag_var = prog.global_block().vars.get(flag_var)
                assert flag_var is not None
            else:
                assert flag_var.name == cur_flag_var
    return flag_var


def get_loss_scaling_var_names_to_restored(prog):
    def retrieve_var_names(loss_scale_op):
        loss_scale_var_in = loss_scale_op.input("PrevLossScaling")
        loss_scale_var_out = loss_scale_op.output("LossScaling")
        assert len(loss_scale_var_in) == 1 and len(
            loss_scale_var_out) and loss_scale_var_in[0] == loss_scale_var_out[
                0]

        good_steps_var_in = loss_scale_op.input("InGoodSteps")
        good_steps_var_out = loss_scale_op.output("OutGoodSteps")
        assert len(good_steps_var_in) == 1 and len(
            good_steps_var_out) == 1 and good_steps_var_in[
                0] == good_steps_var_out[0]

        bad_steps_var_in = loss_scale_op.input("InBadSteps")
        bad_steps_var_out = loss_scale_op.output("OutBadSteps")
        assert len(bad_steps_var_in) == 1 and len(
            bad_steps_var_out) == 1 and bad_steps_var_in[
                0] == bad_steps_var_out[0]
        return loss_scale_var_in[0], good_steps_var_in[0], bad_steps_var_in[0]

    loss_scale_var, good_steps_var, bad_steps_var = None, None, None
    for op in prog.global_block().ops:
        if op.type == 'update_loss_scaling':
            cur_loss_scale_var, cur_good_steps_var, cur_bad_steps_var = retrieve_var_names(
                op)
            if loss_scale_var is None:
                loss_scale_var = cur_loss_scale_var
                good_steps_var = cur_good_steps_var
                bad_steps_var = cur_bad_steps_var

            assert loss_scale_var == cur_loss_scale_var
            assert good_steps_var == cur_good_steps_var
            assert bad_steps_var == cur_bad_steps_var

    assert loss_scale_var is not None
    return loss_scale_var, good_steps_var, bad_steps_var


def get_loss_scaling_var_values(prog):
    scope = utility.get_scope()
    var_names = get_loss_scaling_var_names_to_restored(prog)
    data = []
    for name in var_names:
        value = np.array(scope.find_var(name).get_tensor())
        data.append(value)
        if trainer_id == 0:
            print('Var {} value is: {}'.format(name, value))
    return data


def restore_loss_scaling_var_values(prog, data, place):
    scope = utility.get_scope()
    var_names = get_loss_scaling_var_names_to_restored(prog)
    assert len(var_names) == len(data)
    for name, np_arr in zip(var_names, data):
        var = scope.find_var(name).get_tensor()
        var.set(np_arr, place)


def paddle_dtype_to_np_dtype(pd_dtype):
    if pd_dtype == paddle.float32:
        return np.float32
    elif pd_dtype == paddle.int64:
        return np.int64
    else:
        raise ValueError('Unsupported tensor dtype {}'.format(pd_dtype))


def inplace_fill_constant(tensor, value):
    dtype = paddle_dtype_to_np_dtype(tensor._dtype())
    shape = tensor.shape()
    np_value = (np.ones(shape) * value).astype(dtype)
    place = tensor._place()
    if place._equals(paddle.CPUPlace()):
        place = paddle.CPUPlace()
    elif place._equals(utility.get_place()):
        place = utility.get_place()
    else:
        raise ValueError("Unsupported tensor place {}".format(place))

    old_ptr = tensor._ptr()
    tensor.set(np_value, place)
    new_ptr = tensor._ptr()
    assert old_ptr == new_ptr


def recover_lamb_status(train_prog, args):
    scope = utility.get_scope()

    def fill_input_value(op, input_slot, value):
        var_names = op.input(input_slot)
        assert len(var_names) == 1
        t = scope.find_var(var_names[0]).get_tensor()
        inplace_fill_constant(t, value)

    def fill_output_value(op, output_slot, value):
        var_names = op.output(output_slot)
        assert len(var_names) == 1
        t = scope.find_var(var_names[0]).get_tensor()
        inplace_fill_constant(t, value)

    found_cnt = 0
    for i in range(train_prog.num_blocks):
        block = train_prog.block(i)
        for op in block.ops:
            if args.distributed_lamb:
                assert op.type != 'lamb'
            else:
                assert op.type != 'distributed_fused_lamb'

            if op.type != 'lamb' and op.type != 'distributed_fused_lamb':
                continue

            fill_input_value(op, "Moment1", 0)
            fill_input_value(op, "Moment2", 0)
            fill_input_value(op, "Beta1Pow", args.opt_lamb_beta_1)
            fill_input_value(op, "Beta2Pow", args.opt_lamb_beta_2)
            if op.type == 'distributed_fused_lamb':
                fill_output_value(op, "Step", 0)
                if args.gradient_accumulation_steps > 1:
                    fill_output_value(op, "AccStep", 0)
            found_cnt += 1

    if args.distributed_lamb:
        assert found_cnt == 1
    else:
        assert found_cnt > 1


def run_warmup(args,
               exe,
               train_prog,
               lr_scheduler,
               eval_prog=None,
               warmup_iter=8):
    train_warmup_data = dataset.prepare_warmup_data(args, args.train_batch_size,
                                                    exe.place)
    list_train_warmup_data = [train_warmup_data]

    paddle.device.cuda.synchronize()
    restored_values = get_loss_scaling_var_values(train_prog)
    old_lr_func = lr_scheduler.__call__
    lr_scheduler.__call__ = lambda self: 0.0
    for _ in range(warmup_iter):
        exe.run(train_prog, feed=list_train_warmup_data)
    lr_scheduler.__call__ = old_lr_func
    restore_loss_scaling_var_values(train_prog, restored_values, exe.place)
    paddle.device.cuda.synchronize()

    # extra run as NV code
    exe.run(train_prog, feed=list_train_warmup_data)
    paddle.device.cuda.synchronize()

    if eval_prog is not None:
        eval_warmup_data = dataset.prepare_warmup_data(
            args, args.eval_batch_size, exe.place)
        for _ in range(warmup_iter):
            exe.run(eval_prog, feed=[eval_warmup_data])
        paddle.device.cuda.synchronize()

    #recover_lamb_moment_pows(train_prog, args)
    recover_lamb_status(train_prog, args)
    paddle.device.cuda.synchronize()
    if utility.get_trainer_id() == 0:
        print('warmup ends')


def do_train(args):
    # Initialize the paddle and paddle fleet execute enviroment
    if trainer_id == 0:
        paddle_bert_print_start(key=constants.INIT_START)
        paddle_bert_print_event(key=constants.SEED, val=args.seed)
        paddle_bert_print_event(
            key=constants.GLOBAL_BATCH_SIZE,
            val=args.train_batch_size * num_trainers *
            args.gradient_accumulation_steps)
        paddle_bert_print_event(key='d_batch_size', val=args.train_batch_size)
        paddle_bert_print_event(
            key=constants.GRADIENT_ACCUMULATION_STEPS,
            val=args.gradient_accumulation_steps)
        paddle_bert_print_event(
            key="max_predictions_per_seq", val=args.max_predictions_per_seq)
        paddle_bert_print_event(
            key='opt_learning_rate_training_steps', val=args.max_steps)
        paddle_bert_print_event(key='num_warmup_steps', val=args.warmup_steps)

    place = utility.get_place()
    fleet.init(is_collective=True)

    worker_num = num_trainers
    worker_index = trainer_id

    # Define the input data in the static mode
    main_program = paddle.static.default_main_program()
    startup_program = paddle.static.default_startup_program()

    data_holders, data_inputs, data_labels, varlen_info, mlm_label_info = create_data_holder(
        args)

    config = BertConfig.from_json_file(args.bert_config_path)
    #config.fused_mha = args.fused_mha
    #config.fused_gelu_bias = args.fused_gelu_bias
    config.fused_bias_mha = args.fused_bias_mha
    config.fused_bias_fc = args.fused_bias_fc
    #config.fused_bias_fc_loss_head = args.fused_bias_fc_loss_head
    config.dense_seq_output = args.dense_seq_output
    config.unpad = args.unpad
    config.unpad_fmha = args.unpad_fmha
    config.unpad_fmha_mke_opt = args.unpad_fmha_mke_opt
    config.pad_fmha = args.pad_fmha
    config.max_seq_length = args.max_seq_length
    #config.pad = args.pad
    #config.fuse_qkv = not args.disable_fuse_qkv
    #config.fuse_scale = not args.disable_fuse_scale
    #config.fuse_mask = not args.disable_fuse_mask 
    #config.fuse_dropout = args.enable_import paddle.fluid.profiler as profilerfuse_dropout
    config.fused_dropout_add_ln = args.fused_dropout_add_ln
    #config.apex_softmax = not args.disable_apex_softmax
    #config.enable_stream = args.enable_stream
    #if config.fuse_mask: config.apex_softmax = True
    #if not config.pad: config.enable_stream = True
    #if config.unpad: config.fused_mha = False

    config.unpad_embed = args.unpad_embed

    config.weight_transpose = args.weight_transpose
    config.batch_size = args.batch_size

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)

    int16_max = np.iinfo(np.int16).max
    assert config.vocab_size <= int16_max
    assert args.train_batch_size * args.max_seq_length <= int16_max
    assert args.eval_batch_size * args.max_seq_length <= int16_max

    def build_model():
        model = BertForPretraining(BertModel(config), config)
        criterion = BertPretrainingCriterion(config)

        prediction_scores, seq_relationship_score = model(*data_inputs)
        func = criterion(prediction_scores, seq_relationship_score,
                         *data_labels)
        return model, func

    if args.use_pure_fp16:
        with paddle.static.amp.fp16_guard():
            model, func = build_model()
    else:
        model, func = build_model()
    loss, mlm_acc, num_masked = func()

    eval_program = main_program.clone(for_test=True)
    if args.gpu_exchange_padding and utility.use_nv_input(
    ) and num_trainers > 1:
        prune_exchange_padding_op(eval_program)

    # Define the dynamic learing_reate scheduler and optimizer
    num_training_steps = args.max_steps if args.max_steps > 0 else len(
        train_dataloader) * args.num_train_epochs
    if args.warmup_steps == 0:
        warmup_steps = int(args.max_steps * args.warmup_proportion)
        warmup_start = 0
    else:
        warmup_steps = args.warmup_steps
        warmup_start = args.start_warmup_step

    lr_scheduler = LinearWarmupPolyDecayScheduler(
        startup_warmup_steps=warmup_start,
        warmup_steps=warmup_steps,
        total_steps=args.max_steps,
        base_lr=args.learning_rate,
        end_lr=0.0,
        degree=1.0)

    # Generate parameter names needed to perform weight decay.
    # All bias and LayerNorm parameters are excluded.
    decay_params = [
        p.name for n, p in model.named_parameters()
        if not any(nd in n for nd in ["bias", "norm"])
    ]

    if args.max_grad_norm > 0:
        grad_clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=args.max_grad_norm)
    else:
        grad_clip = None
    exclude_from_weight_decay_fn = lambda var: var.name not in decay_params

    lr_var, step_var = append_lr_op(
        base_lr=args.learning_rate,
        max_step=args.max_steps,
        startup_warmup_step=warmup_start,
        warmup_step=warmup_steps,
        end_lr=0.0,
        degree=1.0)
    optimizer_kwargs = {
        'learning_rate': lr_var,
        'lamb_weight_decay': args.weight_decay_rate,
        'epsilon': args.lamb_epsilon,
        'exclude_from_weight_decay_fn': exclude_from_weight_decay_fn,
        'grad_clip': grad_clip,
        'beta1': args.opt_lamb_beta_1,
        'beta2': args.opt_lamb_beta_2,
    }

    if trainer_id == 0:
        paddle_bert_print_event(
            key=constants.OPT_BASE_LR, val=args.learning_rate)
        paddle_bert_print_event(
            key="opt_learning_rate_warmup_steps", val=args.warmup_steps)
        paddle_bert_print_event(
            key="start_warmup_step", val=args.start_warmup_step)

    #_keep_layer_norm_scale_bias_to_fp32(False)
    _allow_pure_fp16_global_norm_clip(True)
    if args.distributed_lamb:
        # Note: 
        # (1) broadcast_master_param is true means use fp32 to update parameter.
        # (2) if 'is_grad_scaled_by_nranks' is false, must set 'dist_strategy.gradient_scale_configs = {'scale_strategy': 'sum'}'.
        #optimizer_kwargs.update({"broadcast_master_param": True, "clip_after_allreduce": False, "is_grad_scaled_by_nranks": False})
        optimizer_kwargs.update({
            "use_master_param_norm": True,
            "clip_after_allreduce": False,
            "is_grad_scaled_by_nranks": False,
        })
        if args.gradient_accumulation_steps > 1:
            optimizer_kwargs.update({
                "gradient_accumulation_steps": args.gradient_accumulation_steps
            })
        optimizer = DistributedFusedLamb(**optimizer_kwargs)
        optimizer._set_step(step_var)
    else:
        optimizer = paddle.optimizer.Lamb(**optimizer_kwargs)
        if args.use_pure_fp16:
            optimizer._multi_precision = True

    if hasattr(optimizer, "_get_parameter"):
        get_param_func = optimizer._get_parameter
    else:
        get_param_func = lambda name: utility.get_scope().find_var(name).get_tensor()


    if trainer_id == 0:
        paddle_bert_print_event(key='opt_epsilon', val=args.lamb_epsilon)
        paddle_bert_print_event(key='opt_lamb_beta_1', val=args.opt_lamb_beta_1)
        paddle_bert_print_event(key='opt_lamb_beta_2', val=args.opt_lamb_beta_2)
        paddle_bert_print_event(
            key='opt_lamb_weight_decay_rate', val=args.weight_decay_rate)

    # Use the fleet api to compile the distributed optimizer
    print("optimizer",optimizer._get_parameter)

    optimizer = dist_optimizer(args, optimizer)
    print("loss",loss)

    #pdb.set_trace()
    optimizer.minimize(loss)

    # Define the Executor for running the static model
    exe = paddle.static.Executor(place)
    exe.run(startup_program)

    if args.use_amp:
        optimizer.amp_init(place, test_program=eval_program, use_fp16_test=True)

    eval_fetch_list, set_eval_step = append_acc_merge_op(eval_program, mlm_acc,
                                                         num_masked)

    with open('startup_program_{}.txt'.format(trainer_id), 'w') as f:
        f.write(str(startup_program))

    with open('main_program_{}.txt'.format(trainer_id), 'w') as f:
        f.write(str(main_program))

    with open('eval_program_{}.txt'.format(trainer_id), 'w') as f:
        f.write(str(eval_program))

    found_nan_inf = get_found_nan_inf_flag_var(main_program)
    found_global_step_val = get_global_step_var(main_program)
    if args.use_amp:
        assert found_nan_inf is not None
    else:
        assert found_nan_inf is None
    assert found_global_step_val is not None

    build_strategy, exec_strategy = create_strategy(args)
    eval_program = paddle.static.CompiledProgram(
        eval_program).with_data_parallel(
            build_strategy=build_strategy, exec_strategy=exec_strategy)
    run_warmup(
        args,
        exe,
        main_program,
        lr_scheduler,
        eval_prog=eval_program,
        warmup_iter=8)

    ckpt = None
    if args.tf_ckpt_path:
        if trainer_id == 0:
            print('starts to load tf checkpoint...')
            start_t = time.time()
        ckpt = model.load_tf_ckpt(args, get_param_func)
        paddle.device.cuda.synchronize()
        if trainer_id == 0:
            end_t = time.time()
            print('checkpoint loading ends, time cost: {}s'.format(end_t -
                                                                   start_t))

    def save_ckpt(ckpt_saved_path):
        if trainer_id == 0 and ckpt is not None:
            dirname = 'log_{}'.format(num_trainers)
            ckpt_saved_path = os.path.join(dirname, ckpt_saved_path)
            ckpt.save(ckpt_saved_path, get_param_func)
            print('PaddlePaddle ckpt saved into: {}'.format(ckpt_saved_path))

    # save_ckpt('loaded_ckpt_0.pickled')

    pool = ThreadPoolExecutor(1)
    # pre-compute eval boundaries
    samples_trained_per_step = args.train_batch_size * num_trainers * args.gradient_accumulation_steps
    eval_interval_samples = 0.05 * (230.23 * samples_trained_per_step + 3000000)
    eval_interval_samples = int(eval_interval_samples / 25000) * 25000
    start, stop, step = eval_interval_samples, args.max_samples_termination, eval_interval_samples
    eval_steps = [
        math.ceil(i / samples_trained_per_step)
        for i in np.arange(start, stop, step)
    ]
    eval_count = 0
    next_eval_step = eval_steps[eval_count]
    next_eval_training_step = next_eval_step * args.gradient_accumulation_steps
    create_train_dataset = create_cpu_exchange_padding_pretraining_dataset if args.cpu_exchange_padding else create_pretraining_dataset

    context.trainer_comm.Barrier()
    if trainer_id == 0:
        paddle_bert_print_end(key=constants.INIT_STOP)
        paddle_bert_print_start(key=constants.RUN_START)

    f_start_id = 0
    train_dataloader, train_dataloader_cpu_tensor = create_train_dataset(
        data_holders, f_start_id, tolist=False)

    if args.eval_dir:
        eval_dataset_future = pool.submit(create_new_eval_dataset, data_holders)
    need_next_training_shard = args.train_batch_size * args.gradient_accumulation_steps * args.max_steps > 10000

    global_step = 0
    skipped_steps = 0
    training_steps = 0
    now_skipped = 0
    now_step = 0
    skip_interval = 0
    average_loss = 0.0
    end_training, converged = False, False
    coveraged = False
    epoch = 1  # to be consistent with NV

    file_num = context.file_num()

    while global_step < args.max_steps and not end_training:
        if trainer_id == 0:
            paddle_bert_print_start(
                key=constants.EPOCH_START, metadata={'epoch_num': epoch})
            paddle_bert_print_start(
                key=constants.BLOCK_START,
                metadata={'first_epoch_num': epoch,
                          'epoch_count': 1})
            now_time = time.time()

        empty_fetch_list = []
        full_fetch_list = [loss, mlm_acc, found_global_step_val]
        for f_id in range(f_start_id + 1, file_num):
            if need_next_training_shard:
                dataset_future = pool.submit(create_train_dataset, data_holders,
                                             f_id)
            # limin-todo:
            # limin_file_start = time.time()
            for step, batch in enumerate(train_dataloader):
                training_steps += 1
                #if training_steps == 2:
                #   exit()
                #print("training_steps",training_steps)
                update_step = training_steps % args.gradient_accumulation_steps == 0
                batch[0][
                    'host_prefix_sum_seq_len'] = train_dataloader_cpu_tensor[
                        step][0]

                if training_steps < next_eval_training_step and False:
                    cur_fetch_list = empty_fetch_list
                else:
                    cur_fetch_list = full_fetch_list
                #with profiler.profiler('All', 'total') as prof:
                return_val = exe.run(main_program,
                                     feed=batch,
                                     fetch_list=cur_fetch_list)
                if training_steps >= next_eval_training_step or True:
                    loss_return, mlm_acc_return, found_global_step_return = return_val
                    average_loss += loss_return[0]
  
                if update_step:
                    if training_steps >= next_eval_training_step:
#                        global_step = found_global_step_return[0]
                        global_step = int(training_steps /
                                          args.gradient_accumulation_steps)           
                        has_nan_inf_step = (
                            training_steps / args.gradient_accumulation_steps -
                            global_step)
                        if has_nan_inf_step:
                            skipped_steps = has_nan_inf_step
                    else:
                        global_step = int(training_steps /
                                          args.gradient_accumulation_steps)

                    if args.eval_dir and global_step == next_eval_step:
                        skip_interval = skipped_steps
                        now_skipped = skip_interval
                        if True:
                            if eval_count == 0:
                                eval_dataloader, eval_dataloader_cpu_tensor = eval_dataset_future.result(
                                    timeout=None)
                                eval_dataloader = list(eval_dataloader)
                                set_eval_step(len(eval_dataloader))
                            samples_trained = global_step * args.train_batch_size * args.gradient_accumulation_steps * num_trainers
                            samples_trained_prev = samples_trained

                            eval_start_t = time.time()
                            eval_avg_mlm_accuracy = do_eval(
                                exe, eval_program, eval_dataloader,
                                eval_dataloader_cpu_tensor, eval_fetch_list)
                            eval_end_t = time.time()
                            # if trainer_id == 0:
                            #    print('Eval time: {} s'.format(eval_end_t -
                            #                                   eval_start_t))

                            if args.target_mlm_accuracy > 0 and eval_avg_mlm_accuracy >= args.target_mlm_accuracy:
                                end_training, converged = True, True
                                coveraged = True
                                if trainer_id == 0:
                                    print(
                                        "%f > %f, Target MLM Accuracy reached at global_step %d , training_step %d"
                                        % (eval_avg_mlm_accuracy,
                                           args.target_mlm_accuracy,
                                           global_step, training_steps))
                            eval_count += 1
                            next_eval_step = eval_steps[eval_count]
                            next_eval_training_step = next_eval_step * args.gradient_accumulation_steps
                            if trainer_id == 0:
                                paddle_bert_print_event(
                                    key=constants.EVAL_ACCURACY,
                                    val=eval_avg_mlm_accuracy,
                                    metadata={'epoch_num': epoch})
                                print({
                                    "global_steps": global_step,
                                    "eval_mlm_accuracy": eval_avg_mlm_accuracy
                                })

                samples_trained = global_step * args.train_batch_size * args.gradient_accumulation_steps * num_trainers
                if args.log_freq > 0 and training_steps % (
                        args.log_freq * args.gradient_accumulation_steps) == 0:
                    samples_trained = global_step * args.train_batch_size * args.gradient_accumulation_steps * num_trainers
                    #just add the following to print loss
                    cur_fetch_list = full_fetch_list
                    return_val = exe.run(main_program,
                                         feed=batch,
                                         fetch_list=cur_fetch_list)
                    loss_return, mlm_acc_return, found_global_step_return = return_val
                    print("loss_return, mlm_acc_return, found_global_step_return:",loss_return, mlm_acc_return, found_global_step_return[0])
                    if trainer_id == 0:
                        time_interval = time.time() - now_time
                        step_interval = global_step - now_step
                        now_time = time.time()
                        now_step = global_step
                        training_perf = args.train_batch_size * args.gradient_accumulation_steps * num_trainers * (
                            step_interval + skip_interval) / time_interval
                        skip_interval = 0
                        divisor = args.gradient_accumulation_steps
                        now_lr = lr_scheduler()
                        step_loss_to_print = loss_return[0] * args.gradient_accumulation_steps / divisor
                        average_loss_to_print = average_loss / (args.log_freq * divisor)
                        print({
                            "training_steps": training_steps,
                            "average_loss": average_loss_to_print,
                            "step_loss": step_loss_to_print,
                            "learning_rate": now_lr,
                            "seq/s": training_perf,
                            "global_steps": now_step,
                            "samples_trained": samples_trained,
                            "skipped_steps": now_skipped,
                            "timestamp": now_time,
                        })

                        paddle_bert_print_event(
                            key='tracked_stats',
                            val={
                                'seq/s': training_perf,
                                'step_loss': step_loss_to_print,
                                #'avg_loss': average_loss_to_print,
                                #'lr': now_lr,
                            },
                            metadata={"step": (epoch, training_steps)})
                        paddle_bert_print_event(
                            key='throughput', val=training_perf)

                    average_loss = 0.0

                if global_step >= args.max_steps or end_training:
                    status = 'success' if coveraged else 'abort'
                    end_training = True
                    break

            # limin-todo:
            #limin_file_end = time.time()
            #print("limin: one file time: ", limin_file_end - limin_file_start)
            del train_dataloader
            if samples_trained >= args.max_samples_termination or end_training:
                status = 'success' if converged else 'aborted'
                end_training = True
                break

            if not need_next_training_shard:
                dataset_future = pool.submit(create_train_dataset, f_id)
            train_dataloader, train_dataloader_cpu_tensor = dataset_future.result(
                timeout=None)

        if trainer_id == 0:
            paddle_bert_print_end(
                key=constants.BLOCK_STOP, metadata={'first_epoch_num': epoch})
            paddle_bert_print_end(
                key=constants.EPOCH_STOP, metadata={'epoch_num': epoch})

        epoch += 1

    if trainer_id == 0:
        paddle_bert_print_event(constants.TRAIN_SAMPLES, val=samples_trained)
        paddle_bert_print_event(
            constants.EVAL_SAMPLES, val=args.num_eval_examples)
        paddle_bert_print_end(
            key=constants.RUN_STOP, metadata={'status': status})

        #save_ckpt('saved_ckpt_final.pickled')


def do_read(args):
    while context.read_file():
        pass


if __name__ == "__main__":
    args = parse_args()
    if not args.exchange_padding:
        args.cpu_exchange_padding = False
        args.gpu_exchange_padding = False
    else:
        args.gpu_exchange_padding = not args.cpu_exchange_padding

    context.init_args(args)
    trainer_id = context.trainer_id
    num_trainers = context.trainer_num

    if context.is_trainer:
        if trainer_id == 0:
            paddle_bert_print_event(key=constants.SUBMISSION_ORG, val="Baidu")
            paddle_bert_print_event(
                key=constants.SUBMISSION_PLATFORM, val="1 x NVIDIA A100 GPU")
            paddle_bert_print_event(
                key=constants.SUBMISSION_DIVISION, val="closed")
            paddle_bert_print_event(
                key=constants.SUBMISSION_STATUS, val="onprem")
            paddle_bert_print_event(
                key=constants.SUBMISSION_BENCHMARK, val="bert")
            paddle_bert_print_event(key=constants.CACHE_CLEAR, val=True)
        save_env('./paddle_env_{}.json'.format(trainer_id))
        if trainer_id == 0:
            print(args)
            print_flags()
        if args.use_pure_fp16:
            assert args.use_amp, "--use_amp must be True if --use_pure_fp16 is True"
        paddle.enable_static()
        with paddle.static.scope_guard(utility.get_scope()):
            do_train(args)
    else:
        if args.cpu_exchange_padding:
            do_read(args)
    if args.cpu_exchange_padding:
        context.stop_reader()
    print('Process ends')