run_benchmark_1gpu.sh 4.71 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/bin/bash

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

set -ex
export FLAGS_rocm_dir=/opt/dtk-21.04
export FLAGS_max_inplace_grad_add=2
export HSA_FORCE_FINE_GRAIN_PCIE=1
export NCCL_P2P_LEVEL=5

export USE_NV_INPUT=1

USE_UNCOMPRESSED_DATASET=1

BASE_DATA_DIR=${BASE_DATA_DIR:-"/data/mlperf/bert"}
export USE_NV_INPUT
UNCOMPRESSED_DATA_DIR=$BASE_DATA_DIR/hdf5/training-4320/hdf5_4320_shards_uncompressed
VARLENGTH_DATA_DIR=$BASE_DATA_DIR/hdf5/training-4320/hdf5_4320_shards_varlength

export DATA_DIR=$UNCOMPRESSED_DATA_DIR
export EVAL_DIR=$BASE_DATA_DIR/hdf5/eval
if [[ "$USE_NV_INPUT" == "1" && "$USE_UNCOMPRESSED_DATASET" == "0" ]]; then
  export DATA_DIR="$VARLENGTH_DATA_DIR"
  export EVAL_DIR=$BASE_DATA_DIR/hdf5/eval
else
  export USE_UNCOMPRESSED_DATASET=1
fi
export USE_UNCOMPRESSED_DATASET
export TF_CKPT_PATH=$BASE_DATA_DIR/phase1/model.ckpt-28252.tf_pickled
export BERT_CONFIG_PATH=$BASE_DATA_DIR/phase1/bert_config.json

export PYTHON=python3
export PADDLE_TRAINER_ID=${OMPI_COMM_WORLD_RANK}
export PADDLE_TRAINERS_NUM=${PADDLE_TRAINERS_NUM:-"1"}
export PADDLE_TRAINER_ENDPOINTS=${PADDLE_TRAINER_ENDPOINTS:-"localhost:60045"}
OMPI_COMM_WORLD_RANK=${OMPI_COMM_WORLD_RANK:-"0"}
lrank=$OMPI_COMM_WORLD_LOCAL_RANK

function get_device_id() {
$PYTHON <<EOF
import paddle
import os
gpus = os.environ.get("CUDA_VISIBLE_DEVICES", None)
if gpus is None:
    print($OMPI_COMM_WORLD_RANK)
else:
    gpus = gpus.split(",")
    print(gpus[$OMPI_COMM_WORLD_RANK])
EOF
}
if [[ $PADDLE_TRAINER_ID -lt $PADDLE_TRAINERS_NUM ]]; then
  export CUDA_VISIBLE_DEVICES=0
  export IS_TRAINER=1
  export IS_READER=0
else
  export CUDA_VISIBLE_DEVICES=""
  export IS_TRAINER=0
  export IS_READER=1
fi

echo "Trainer :" $CUDA_VISIBLE_DEVICES $PADDLE_TRAINER_ENDPOINTS $PADDLE_TRAINERS_NUM

export FLAGS_sync_nccl_allreduce=0
export FLAGS_fraction_of_gpu_memory_to_use=0.99
export FLAGS_call_stack_level=2
export FLAGS_use_fast_math=0
export FLAGS_enable_nvtx=1

batch_size=4
eval_batch_size=9
#use_amp=True
#use_pure_fp16=True
use_amp=True
use_pure_fp16=False

max_steps=820
log_freq=50
eval_iter_start_samples=175000
eval_iter_samples=175000
max_seq_length=512

dense_seq_output=True
unpad=False
unpad_fmha=False
fused_bias_mha=True
fused_bias_fc=True
## can be False or True 
weight_transpose=True

###fused_dropout_add_ln=True
fused_dropout_add_ln=False
exchange_padding=True
cpu_exchange_padding=True

distributed_lamb=True

unpad_embed=False
unpad_fmha_mke_opt=True

sort_eval_data=False

LOG_DIR="log_${PADDLE_TRAINERS_NUM}"
mkdir -p ${LOG_DIR}
LOG_FILE=${LOG_DIR}/worker.${PADDLE_TRAINER_ID}

export FLAGS_max_inplace_grad_add=2
if [[ "$exchange_padding" == "true" || "$exchange_padding" == "True" ]]; then
  if [[ "$cpu_exchange_padding" == "true" || "$cpu_exchange_padding" == "True" ]]; then
    export DATA_DIR="$UNCOMPRESSED_DATA_DIR"
  fi
fi


#$NSYS_CMD $BIND_CMD $PYTHON -u run_pretrain.py \
BERT_CMD="run_pretrain.py \
   --max_predictions_per_seq 76 \
   --train_batch_size $batch_size   \
   --eval_batch_size $eval_batch_size \
   --sort_eval_data $sort_eval_data \
   --learning_rate 0.00255 \
   --weight_decay 0.0 \
   --lamb_epsilon 1e-06 \
   --start_warmup_step -76 \
   --warmup_proportion 0.0 \
   --warmup_steps 256 \
   --input_dir $DATA_DIR \
   --log_freq $log_freq \
   --max_steps $max_steps \
   --tf_ckpt_path $TF_CKPT_PATH \
   --bert_config_path $BERT_CONFIG_PATH \
   --unpad $unpad \
   --unpad_fmha $unpad_fmha \
   --unpad_fmha_mke_opt $unpad_fmha_mke_opt \
   --unpad_embed $unpad_embed \
   --fused_bias_mha $fused_bias_mha \
   --fused_bias_fc $fused_bias_fc \
   --fused_dropout_add_ln $fused_dropout_add_ln \
   --weight_transpose $weight_transpose \
   --max_seq_length $max_seq_length \
   --eval_dir $EVAL_DIR \
   --distributed_lamb $distributed_lamb \
   --exchange_padding $exchange_padding \
   --cpu_exchange_padding $cpu_exchange_padding \
   --seed $SEED \
   --use_uncompressed_dataset $USE_UNCOMPRESSED_DATASET \
   --dense_seq_output $dense_seq_output \
   --gradient_accumulation_steps 1 \
   --opt_lamb_beta_1 0.71 \
   --opt_lamb_beta_2 0.88 \
   --enable_addto True \
   --use_pure_fp16 $use_pure_fp16 \
   --use_amp $use_amp"


#Run experiments
#python3 -u $BERT_CMD >& $LOG_FILE
python3 -u $BERT_CMD