offline_inference_vision_language_multi_image.py 9.9 KB
Newer Older
laibao's avatar
laibao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""
This example shows how to use vLLM for running offline inference with
multi-image input on vision language models, using the chat template defined
by the model.
"""
from argparse import Namespace
from typing import List, NamedTuple, Optional

from PIL.Image import Image
from transformers import AutoProcessor, AutoTokenizer

from vllm import LLM, SamplingParams
from vllm.multimodal.utils import fetch_image
from vllm.utils import FlexibleArgumentParser

QUESTION = "What is the content of each image?"
IMAGE_URLS = [
    "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg",
    "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg",
]


class ModelRequestData(NamedTuple):
    llm: LLM
    prompt: str
    stop_token_ids: Optional[List[str]]
    image_data: List[Image]
    chat_template: Optional[str]


def load_qwenvl_chat(question: str, image_urls: List[str]) -> ModelRequestData:
    model_name = "Qwen/Qwen-VL-Chat"
    llm = LLM(
        model=model_name,
        trust_remote_code=True,
        max_num_seqs=5,
        limit_mm_per_prompt={"image": len(image_urls)},
    )
    placeholders = "".join(f"Picture {i}: <img></img>\n"
                           for i, _ in enumerate(image_urls, start=1))

    # This model does not have a chat_template attribute on its tokenizer,
    # so we need to explicitly pass it. We use ChatML since it's used in the
    # generation utils of the model:
    # https://huggingface.co/Qwen/Qwen-VL-Chat/blob/main/qwen_generation_utils.py#L265
    tokenizer = AutoTokenizer.from_pretrained(model_name,
                                              trust_remote_code=True)

    # Copied from: https://huggingface.co/docs/transformers/main/en/chat_templating
    chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"  # noqa: E501

    messages = [{'role': 'user', 'content': f"{placeholders}\n{question}"}]
    prompt = tokenizer.apply_chat_template(messages,
                                           tokenize=False,
                                           add_generation_prompt=True,
                                           chat_template=chat_template)

    stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>"]
    stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
    return ModelRequestData(
        llm=llm,
        prompt=prompt,
        stop_token_ids=stop_token_ids,
        image_data=[fetch_image(url) for url in image_urls],
        chat_template=chat_template,
    )


def load_phi3v(question: str, image_urls: List[str]) -> ModelRequestData:
    # num_crops is an override kwarg to the multimodal image processor;
    # For some models, e.g., Phi-3.5-vision-instruct, it is recommended
    # to use 16 for single frame scenarios, and 4 for multi-frame.
    #
    # Generally speaking, a larger value for num_crops results in more
    # tokens per image instance, because it may scale the image more in
    # the image preprocessing. Some references in the model docs and the
    # formula for image tokens after the preprocessing
    # transform can be found below.
    #
    # https://huggingface.co/microsoft/Phi-3.5-vision-instruct#loading-the-model-locally
    # https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/main/processing_phi3_v.py#L194
    llm = LLM(
        model="microsoft/Phi-3.5-vision-instruct",
        trust_remote_code=True,
        max_model_len=4096,
        limit_mm_per_prompt={"image": len(image_urls)},
        mm_processor_kwargs={"num_crops": 4},
    )
    placeholders = "\n".join(f"<|image_{i}|>"
                             for i, _ in enumerate(image_urls, start=1))
    prompt = f"<|user|>\n{placeholders}\n{question}<|end|>\n<|assistant|>\n"
    stop_token_ids = None

    return ModelRequestData(
        llm=llm,
        prompt=prompt,
        stop_token_ids=stop_token_ids,
        image_data=[fetch_image(url) for url in image_urls],
        chat_template=None,
    )


def load_internvl(question: str, image_urls: List[str]) -> ModelRequestData:
    model_name = "OpenGVLab/InternVL2-2B"

    llm = LLM(
        model=model_name,
        trust_remote_code=True,
        max_num_seqs=5,
        max_model_len=4096,
        limit_mm_per_prompt={"image": len(image_urls)},
    )

    placeholders = "\n".join(f"Image-{i}: <image>\n"
                             for i, _ in enumerate(image_urls, start=1))
    messages = [{'role': 'user', 'content': f"{placeholders}\n{question}"}]

    tokenizer = AutoTokenizer.from_pretrained(model_name,
                                              trust_remote_code=True)
    prompt = tokenizer.apply_chat_template(messages,
                                           tokenize=False,
                                           add_generation_prompt=True)

    # Stop tokens for InternVL
    # models variants may have different stop tokens
    # please refer to the model card for the correct "stop words":
    # https://huggingface.co/OpenGVLab/InternVL2-2B#service
    stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"]
    stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]

    return ModelRequestData(
        llm=llm,
        prompt=prompt,
        stop_token_ids=stop_token_ids,
        image_data=[fetch_image(url) for url in image_urls],
        chat_template=None,
    )


def load_qwen2_vl(question, image_urls: List[str]) -> ModelRequestData:
    try:
        from qwen_vl_utils import process_vision_info
    except ModuleNotFoundError:
        print('WARNING: `qwen-vl-utils` not installed, input images will not '
              'be automatically resized. You can enable this functionality by '
              '`pip install qwen-vl-utils`.')
        process_vision_info = None

    model_name = "Qwen/Qwen2-VL-7B-Instruct"

    llm = LLM(
        model=model_name,
        max_num_seqs=5,
        max_model_len=32768 if process_vision_info is None else 4096,
        limit_mm_per_prompt={"image": len(image_urls)},
    )

    placeholders = [{"type": "image", "image": url} for url in image_urls]
    messages = [{
        "role": "system",
        "content": "You are a helpful assistant."
    }, {
        "role":
        "user",
        "content": [
            *placeholders,
            {
                "type": "text",
                "text": question
            },
        ],
    }]

    processor = AutoProcessor.from_pretrained(model_name)

    prompt = processor.apply_chat_template(messages,
                                           tokenize=False,
                                           add_generation_prompt=True)

    stop_token_ids = None

    if process_vision_info is None:
        image_data = [fetch_image(url) for url in image_urls]
    else:
        image_data, _ = process_vision_info(messages)

    return ModelRequestData(
        llm=llm,
        prompt=prompt,
        stop_token_ids=stop_token_ids,
        image_data=image_data,
        chat_template=None,
    )


model_example_map = {
    "phi3_v": load_phi3v,
    "internvl_chat": load_internvl,
    "qwen2_vl": load_qwen2_vl,
    "qwen_vl_chat": load_qwenvl_chat,
}


def run_generate(model, question: str, image_urls: List[str]):
    req_data = model_example_map[model](question, image_urls)

    sampling_params = SamplingParams(temperature=0.0,
                                     max_tokens=128,
                                     stop_token_ids=req_data.stop_token_ids)

    outputs = req_data.llm.generate(
        {
            "prompt": req_data.prompt,
            "multi_modal_data": {
                "image": req_data.image_data
            },
        },
        sampling_params=sampling_params)

    for o in outputs:
        generated_text = o.outputs[0].text
        print(generated_text)


def run_chat(model: str, question: str, image_urls: List[str]):
    req_data = model_example_map[model](question, image_urls)

    sampling_params = SamplingParams(temperature=0.0,
                                     max_tokens=128,
                                     stop_token_ids=req_data.stop_token_ids)
    outputs = req_data.llm.chat(
        [{
            "role":
            "user",
            "content": [
                {
                    "type": "text",
                    "text": question,
                },
                *({
                    "type": "image_url",
                    "image_url": {
                        "url": image_url
                    },
                } for image_url in image_urls),
            ],
        }],
        sampling_params=sampling_params,
        chat_template=req_data.chat_template,
    )

    for o in outputs:
        generated_text = o.outputs[0].text
        print(generated_text)


def main(args: Namespace):
    model = args.model_type
    method = args.method

    if method == "generate":
        run_generate(model, QUESTION, IMAGE_URLS)
    elif method == "chat":
        run_chat(model, QUESTION, IMAGE_URLS)
    else:
        raise ValueError(f"Invalid method: {method}")


if __name__ == "__main__":
    parser = FlexibleArgumentParser(
        description='Demo on using vLLM for offline inference with '
        'vision language models that support multi-image input')
    parser.add_argument('--model-type',
                        '-m',
                        type=str,
                        default="phi3_v",
                        choices=model_example_map.keys(),
                        help='Huggingface "model_type".')
    parser.add_argument("--method",
                        type=str,
                        default="generate",
                        choices=["generate", "chat"],
                        help="The method to run in `vllm.LLM`.")

    args = parser.parse_args()
    main(args)