inference.py 6.09 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.distributed as dist
import datetime
from vlmeval.config import supported_VLM, api_models
from vlmeval.utils import TSVDataset, track_progress_rich, split_MMMU
from vlmeval.smp import *

FAIL_MSG = 'Failed to obtain answer via API.'


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, nargs='+', required=True)
    parser.add_argument('--model', type=str, nargs='+', required=True)
    parser.add_argument('--nproc', type=int, default=4, required=True)
    parser.add_argument('--verbose', action='store_true')
    args = parser.parse_args()
    return args


# Only API model is accepted
def infer_data_api(work_dir, model_name, dataset_name, index_set=None, api_nproc=4, ignore_failed=False):
    rank, world_size = get_rank_and_world_size()
    assert rank == 0 and world_size == 1
    dataset = TSVDataset(dataset_name)
    data = dataset.data
    if index_set is not None:
        data = data[data['index'].isin(index_set)]

    model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
    assert getattr(model, 'is_api', False)

    lt, indices = len(data), list(data['index'])
    structs = [dataset.build_prompt(data.iloc[i]) for i in range(lt)]

    # Corner Case
    if listinstr(['MMMU'], dataset_name):
        structs = [split_MMMU(s) for s in structs]

    out_file = f'{work_dir}/{model_name}_{dataset_name}_supp.pkl'
    res = {}
    if osp.exists(out_file):
        res = load(out_file)
        if ignore_failed:
            res = {k: v for k, v in res.items() if FAIL_MSG not in v}

    structs = [s for i, s in zip(indices, structs) if i not in res]
    indices = [i for i in indices if i not in res]

    gen_func = model.generate
    # For now, we do not use split_MMMU for MMMU dataset
    structs = [dict(message=struct, dataset=dataset_name) for struct in structs]

    if len(structs):
        track_progress_rich(gen_func, structs, nproc=api_nproc, chunksize=api_nproc, save=out_file, keys=indices)

    res = load(out_file)
    if index_set is not None:
        res = {k: v for k, v in res.items() if k in index_set}
    os.remove(out_file)
    return res


def infer_data(model_name, work_dir, dataset_name, out_file, verbose=False, api_nproc=4):
    prev_file = f'{work_dir}/{model_name}_{dataset_name}_PREV.pkl'
    res = load(prev_file) if osp.exists(prev_file) else {}
    if osp.exists(out_file):
        res.update(load(out_file))

    rank, world_size = get_rank_and_world_size()
    if rank == 0:
        dataset = TSVDataset(dataset_name)
    if world_size > 1:
        dist.barrier()
    dataset = TSVDataset(dataset_name)

    sheet_indices = list(range(rank, len(dataset), world_size))
    lt = len(sheet_indices)
    data = dataset.data.iloc[sheet_indices]
    data_indices = [i for i in data['index']]

    # If finished, will exit without building the model
    all_finished = True
    for i in range(lt):
        idx = data.iloc[i]['index']
        if idx not in res:
            all_finished = False
    if all_finished:
        res = {k: res[k] for k in data_indices}
        dump(res, out_file)
        return

    # Data need to be inferred
    data = data[~data['index'].isin(res)]
    lt = len(data)

    model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name

    is_api = getattr(model, 'is_api', False)
    if is_api:
        lt, indices = len(data), list(data['index'])
        supp = infer_data_api(
            work_dir=work_dir,
            model_name=model_name,
            dataset_name=dataset_name,
            index_set=set(indices),
            api_nproc=api_nproc)
        for idx in indices:
            assert idx in supp
        res.update(supp)
        res = {k: res[k] for k in data_indices}
        dump(res, out_file)
        return model_name

    for i in tqdm(range(lt)):
        idx = data.iloc[i]['index']
        if idx in res:
            continue

        if hasattr(model, 'use_custom_prompt') and model.use_custom_prompt(dataset_name):
            struct = model.build_prompt(data.iloc[i], dataset=dataset_name)
        else:
            struct = dataset.build_prompt(data.iloc[i])

        # Corner Case
        if listinstr(['MMMU'], dataset_name):
            struct = split_MMMU(struct)

        # For now, we do not use split_MMMU for MMMU dataset
        response = model.generate(message=struct, dataset=dataset_name)
        # torch.cuda.empty_cache()

        if verbose:
            print(response, flush=True)

        res[idx] = response
        if (i + 1) % 20 == 0:
            dump(res, out_file)

    res = {k: res[k] for k in data_indices}
    dump(res, out_file)
    return model


# A wrapper for infer_data, do the pre & post processing
def infer_data_job(model, work_dir, model_name, dataset_name, verbose=False, api_nproc=4, ignore_failed=False):
    rank, world_size = get_rank_and_world_size()
    result_file = osp.join(work_dir, f'{model_name}_{dataset_name}.xlsx')

    prev_file = f'{work_dir}/{model_name}_{dataset_name}_PREV.pkl'
    if osp.exists(result_file):
        if rank == 0:
            data = load(result_file)
            results = {k: v for k, v in zip(data['index'], data['prediction'])}
            if not ignore_failed:
                results = {k: v for k, v in results.items() if FAIL_MSG not in str(v)}
            dump(results, prev_file)
        if world_size > 1:
            dist.barrier()

    tmpl = osp.join(work_dir, '{}' + f'{world_size}_{dataset_name}.pkl')
    out_file = tmpl.format(rank)

    model = infer_data(
        model, work_dir=work_dir, dataset_name=dataset_name, out_file=out_file, verbose=verbose, api_nproc=api_nproc)
    if world_size > 1:
        dist.barrier()

    if rank == 0:
        data_all = {}
        for i in range(world_size):
            data_all.update(load(tmpl.format(i)))

        data = TSVDataset(dataset_name).data
        for x in data['index']:
            assert x in data_all
        data['prediction'] = [str(data_all[x]) for x in data['index']]
        if 'image' in data:
            data.pop('image')

        dump(data, result_file)
        for i in range(world_size):
            os.remove(tmpl.format(i))
    return model