gpt.py 6.45 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from ..smp import *
import os
import sys
from .base import BaseAPI

APIBASES = {
    'OFFICIAL': 'https://api.openai.com/v1/chat/completions',
}


def GPT_context_window(model):
    length_map = {
        'gpt-4-1106-preview': 128000,
        'gpt-4-vision-preview': 128000,
        'gpt-4': 8192,
        'gpt-4-32k': 32768,
        'gpt-4-0613': 8192,
        'gpt-4-32k-0613': 32768,
        'gpt-3.5-turbo-1106': 16385,
        'gpt-3.5-turbo': 4096,
        'gpt-3.5-turbo-16k': 16385,
        'gpt-3.5-turbo-instruct': 4096,
        'gpt-3.5-turbo-0613': 4096,
        'gpt-3.5-turbo-16k-0613': 16385,
    }
    if model in length_map:
        return length_map[model]
    else:
        return 128000


class OpenAIWrapper(BaseAPI):

    is_api: bool = True

    def __init__(self,
                 model: str = 'gpt-3.5-turbo-0613',
                 retry: int = 5,
                 wait: int = 5,
                 key: str = None,
                 verbose: bool = True,
                 system_prompt: str = None,
                 temperature: float = 0,
                 timeout: int = 60,
                 api_base: str = None,
                 max_tokens: int = 1024,
                 img_size: int = 512,
                 img_detail: str = 'low',
                 **kwargs):

        self.model = model
        self.cur_idx = 0
        self.fail_msg = 'Failed to obtain answer via API. '
        self.max_tokens = max_tokens
        self.temperature = temperature

        if 'step-1v' in model:
            env_key = os.environ.get('STEPAI_API_KEY', '')
            if key is None:
                key = env_key
        else:
            env_key = os.environ.get('OPENAI_API_KEY', '')
            if key is None:
                key = env_key
            assert isinstance(key, str) and key.startswith('sk-'), (
                f'Illegal openai_key {key}. '
                'Please set the environment variable OPENAI_API_KEY to your openai key. '
            )
        self.key = key
        assert img_size > 0 or img_size == -1
        self.img_size = img_size
        assert img_detail in ['high', 'low']
        self.img_detail = img_detail
        self.timeout = timeout

        super().__init__(wait=wait, retry=retry, system_prompt=system_prompt, verbose=verbose, **kwargs)

        if api_base is None:
            if 'OPENAI_API_BASE' in os.environ and os.environ['OPENAI_API_BASE'] != '':
                self.logger.error('Environment variable OPENAI_API_BASE is set. Will use it as api_base. ')
                api_base = os.environ['OPENAI_API_BASE']
            else:
                api_base = 'OFFICIAL'

        assert api_base is not None

        if api_base in APIBASES:
            self.api_base = APIBASES[api_base]
        elif api_base.startswith('http'):
            self.api_base = api_base
        else:
            self.logger.error('Unknown API Base. ')
            sys.exit(-1)
        self.logger.info(f'Using API Base: {self.api_base}; API Key: {self.key}')

    # inputs can be a lvl-2 nested list: [content1, content2, content3, ...]
    # content can be a string or a list of image & text
    def prepare_inputs(self, inputs):
        input_msgs = []
        if self.system_prompt is not None:
            input_msgs.append(dict(role='system', content=self.system_prompt))
        has_images = np.sum([x['type'] == 'image' for x in inputs])
        if has_images:
            content_list = []
            for msg in inputs:
                if msg['type'] == 'text':
                    content_list.append(dict(type='text', text=msg['value']))
                elif msg['type'] == 'image':
                    from PIL import Image
                    img = Image.open(msg['value'])
                    b64 = encode_image_to_base64(img, target_size=self.img_size)
                    img_struct = dict(url=f'data:image/jpeg;base64,{b64}', detail=self.img_detail)
                    content_list.append(dict(type='image_url', image_url=img_struct))
            input_msgs.append(dict(role='user', content=content_list))
        else:
            assert all([x['type'] == 'text' for x in inputs])
            text = '\n'.join([x['value'] for x in inputs])
            input_msgs.append(dict(role='user', content=text))
        return input_msgs

    def generate_inner(self, inputs, **kwargs) -> str:
        input_msgs = self.prepare_inputs(inputs)
        temperature = kwargs.pop('temperature', self.temperature)
        max_tokens = kwargs.pop('max_tokens', self.max_tokens)

        context_window = GPT_context_window(self.model)
        max_tokens = min(max_tokens, context_window - self.get_token_len(inputs))
        if 0 < max_tokens <= 100:
            self.logger.warning(
                'Less than 100 tokens left, '
                'may exceed the context window with some additional meta symbols. '
            )
        if max_tokens <= 0:
            return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '

        headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self.key}'}
        payload = dict(
            model=self.model,
            messages=input_msgs,
            max_tokens=max_tokens,
            n=1,
            temperature=temperature,
            **kwargs)
        response = requests.post(self.api_base, headers=headers, data=json.dumps(payload), timeout=self.timeout * 1.1)
        ret_code = response.status_code
        ret_code = 0 if (200 <= int(ret_code) < 300) else ret_code
        answer = self.fail_msg
        try:
            resp_struct = json.loads(response.text)
            answer = resp_struct['choices'][0]['message']['content'].strip()
        except:
            pass
        return ret_code, answer, response

    def get_token_len(self, inputs) -> int:
        import tiktoken
        try:
            enc = tiktoken.encoding_for_model(self.model)
        except:
            enc = tiktoken.encoding_for_model('gpt-4')
        assert isinstance(inputs, list)
        tot = 0
        for item in inputs:
            if item['type'] == 'text':
                tot += len(enc.encode(item['value']))
            elif item['type'] == 'image':
                tot += 85
                if self.img_detail == 'high':
                    img = Image.open(item['value'])
                    npatch = np.ceil(img.size[0] / 512) * np.ceil(img.size[1] / 512)
                    tot += npatch * 170
        return tot


class GPT4V(OpenAIWrapper):

    def generate(self, message, dataset=None):
        return super(GPT4V, self).generate(message)