minicpm-o_audio.py 2.74 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import math
import numpy as np
from PIL import Image
from moviepy.editor import VideoFileClip
import tempfile
import librosa
import soundfile as sf
import torch
from PIL import Image
from modelscope import AutoModel, AutoTokenizer

# load omni model default, the default init_vision/init_audio/init_tts is True
# if load vision-only model, please set init_audio=False and init_tts=False
# if load audio-only model, please set init_vision=False
model = AutoModel.from_pretrained(
wanglch's avatar
wanglch committed
16
    'openbmb/MiniCPM-o-2_6',
wanglch's avatar
wanglch committed
17
18
19
20
21
22
23
24
25
26
    trust_remote_code=True,
    attn_implementation='sdpa', # sdpa or flash_attention_2
    torch_dtype=torch.bfloat16,
    init_vision=True,
    init_audio=True,
    init_tts=True
)


model = model.eval().cuda()
wanglch's avatar
wanglch committed
27
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-o-2_6', trust_remote_code=True)
wanglch's avatar
wanglch committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

# In addition to vision-only mode, tts processor and vocos also needs to be initialized
model.init_tts()

def get_video_chunk_content(video_path, flatten=True):
    video = VideoFileClip(video_path)
    print('video_duration:', video.duration)
    
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file:
        temp_audio_file_path = temp_audio_file.name
        video.audio.write_audiofile(temp_audio_file_path, codec="pcm_s16le", fps=16000)
        audio_np, sr = librosa.load(temp_audio_file_path, sr=16000, mono=True)
    num_units = math.ceil(video.duration)
    
    # 1 frame + 1s audio chunk
    contents= []
    for i in range(num_units):
        frame = video.get_frame(i+1)
        image = Image.fromarray((frame).astype(np.uint8))
        audio = audio_np[sr*i:sr*(i+1)]
        if flatten:
            contents.extend(["<unit>", image, audio])
        else:
            contents.append(["<unit>", image, audio])
    
    return contents

video_path="./MiniCPM-o-2_6/assets/Skiing.mp4"
# if use voice clone prompt, please set ref_audio
ref_audio_path = "./MiniCPM-V/MiniCPM-o-2_6/assets/demo.wav"
ref_audio, _ = librosa.load(ref_audio_path, sr=16000, mono=True)
sys_msg = model.get_sys_prompt(ref_audio=ref_audio, mode='omni', language='en')
# or use default prompt
# sys_msg = model.get_sys_prompt(mode='omni', language='en')

contents = get_video_chunk_content(video_path)
msg = {"role":"user", "content": contents}
msgs = [sys_msg, msg]

# please set generate_audio=True and output_audio_path to save the tts result
generate_audio = True
output_audio_path = 'output.wav'

res = model.chat(
    msgs=msgs,
    tokenizer=tokenizer,
    sampling=True,
    temperature=0.5,
    max_new_tokens=4096,
    omni_input=True, # please set omni_input=True when omni inference
    use_tts_template=True,
    generate_audio=generate_audio,
    output_audio_path=output_audio_path,
    max_slice_nums=1,
    use_image_id=False,
    return_dict=True
)
print(res)