decode.py 24.4 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
"""
Life cycle of a request in the decode server

1. PreallocQueue:
    a. Initialize a receiver for each request
    b. The request handshakes first, and pre-allocate kv once there is available kv.
    c. Move the request to TransferQueue.

2. TransferQueue:
    a. Poll the receiver to check the transfer state
    b. If the transfer has finished, move the request to waiting queue

3. WaitingQueue:
    a. Use the requests in the queue to construct a PrebuiltExtendBatch
    b. Skip the prefill forward but only populate metadata

4. RunningBatch:
    a. Merge the resolved PrebuiltExtendBatch into running batch to run decoding
"""

from __future__ import annotations

import logging
import os
from collections import deque
from dataclasses import dataclass
from http import HTTPStatus
from typing import TYPE_CHECKING, List, Optional, Tuple

import numpy as np
import torch
from torch.distributed import ProcessGroup

from sglang.srt.disaggregation.base import BaseKVManager, BaseKVReceiver, KVArgs, KVPoll
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
    FakeBootstrapHost,
    KVClassType,
    MetadataBuffers,
    ReqToMetadataIdxAllocator,
    TransferBackend,
    get_kv_class,
    is_mla_backend,
    kv_to_page_indices,
    poll_and_all_reduce,
    prepare_abort,
)
from sglang.srt.managers.schedule_batch import FINISH_ABORT, ScheduleBatch
from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
from sglang.srt.mem_cache.memory_pool import ReqToTokenPool, TokenToKVPoolAllocator
from sglang.srt.model_executor.forward_batch_info import ForwardMode

logger = logging.getLogger(__name__)

if TYPE_CHECKING:
    from sglang.srt.managers.schedule_batch import Req
    from sglang.srt.managers.scheduler import Scheduler


@dataclass
class DecodeRequest:
    req: Req
    kv_receiver: BaseKVReceiver
    waiting_for_input: bool = False
    metadata_buffer_index: int = -1


class DecodePreallocQueue:
    """
    Store the requests that are preallocating.
    """

    def __init__(
        self,
        req_to_token_pool: ReqToTokenPool,
        token_to_kv_pool_allocator: TokenToKVPoolAllocator,
        draft_token_to_kv_pool: Optional[KVCache],
        req_to_metadata_buffer_idx_allocator: ReqToMetadataIdxAllocator,
        metadata_buffers: MetadataBuffers,
        scheduler: Scheduler,
        transfer_queue: DecodeTransferQueue,
        tree_cache: BasePrefixCache,
        gloo_group: ProcessGroup,
        tp_rank: int,
        tp_size: int,
        bootstrap_port: int,
        transfer_backend: TransferBackend,
    ):
        self.req_to_token_pool = req_to_token_pool
        self.token_to_kv_pool_allocator = token_to_kv_pool_allocator
        self.token_to_kv_pool = token_to_kv_pool_allocator.get_kvcache()
        self.draft_token_to_kv_pool = draft_token_to_kv_pool
        self.is_mla_backend = is_mla_backend(self.token_to_kv_pool)
        self.metadata_buffers = metadata_buffers
        self.req_to_metadata_buffer_idx_allocator = req_to_metadata_buffer_idx_allocator
        self.scheduler = scheduler
        self.transfer_queue = transfer_queue
        self.tree_cache = tree_cache  # this is always a chunk cache
        self.gloo_group = gloo_group
        self.tp_rank = tp_rank
        self.tp_size = tp_size
        self.bootstrap_port = bootstrap_port

        self.num_reserved_decode_tokens = int(
            os.environ.get("SGLANG_NUM_RESERVED_DECODE_TOKENS", "512")
        )

        # Queue for requests pending pre-allocation
        self.queue: List[DecodeRequest] = []
        self.transfer_backend = transfer_backend
        self.kv_manager = self._init_kv_manager()

    def _init_kv_manager(self) -> BaseKVManager:
        kv_args = KVArgs()
        kv_args.engine_rank = self.tp_rank
        kv_data_ptrs, kv_data_lens, kv_item_lens = (
            self.token_to_kv_pool.get_contiguous_buf_infos()
        )

        if self.draft_token_to_kv_pool is not None:
            draft_kv_data_ptrs, draft_kv_data_lens, draft_kv_item_lens = (
                self.draft_token_to_kv_pool.get_contiguous_buf_infos()
            )
            kv_data_ptrs += draft_kv_data_ptrs
            kv_data_lens += draft_kv_data_lens
            kv_item_lens += draft_kv_item_lens

        kv_args.kv_data_ptrs = kv_data_ptrs
        kv_args.kv_data_lens = kv_data_lens
        kv_args.kv_item_lens = kv_item_lens

        kv_args.aux_data_ptrs, kv_args.aux_data_lens, kv_args.aux_item_lens = (
            self.metadata_buffers.get_buf_infos()
        )
        kv_args.ib_device = self.scheduler.server_args.disaggregation_ib_device
        kv_args.gpu_id = self.scheduler.gpu_id
        kv_manager_class = get_kv_class(self.transfer_backend, KVClassType.MANAGER)
        kv_manager = kv_manager_class(
            kv_args,
            DisaggregationMode.DECODE,
            self.scheduler.server_args,
            self.is_mla_backend,
        )
        return kv_manager

    def add(self, req: Req) -> None:
        """Add a request to the pending queue."""
        if req.bootstrap_host == FakeBootstrapHost:
            # Fake transfer for warmup reqs
            kv_receiver_class = get_kv_class(TransferBackend.FAKE, KVClassType.RECEIVER)
        else:
            kv_receiver_class = get_kv_class(
                self.transfer_backend, KVClassType.RECEIVER
            )
        kv_receiver = kv_receiver_class(
            mgr=self.kv_manager,
            bootstrap_addr=f"{req.bootstrap_host}:{req.bootstrap_port}",
            bootstrap_room=req.bootstrap_room,
        )
        self.queue.append(DecodeRequest(req=req, kv_receiver=kv_receiver))

    def extend(self, reqs: List[Req]) -> None:
        """Add a request to the pending queue."""
        for req in reqs:
            self.add(req)

    def _update_handshake_waiters(self) -> None:
        if not self.queue:
            return

        if all(decode_req.waiting_for_input for decode_req in self.queue):
            return

        polls = poll_and_all_reduce(
            [decode_req.kv_receiver for decode_req in self.queue], self.gloo_group
        )

        for i, (decode_req, poll) in enumerate(zip(self.queue, polls)):
            if poll == KVPoll.Bootstrapping:
                pass
            elif poll == KVPoll.WaitingForInput:
                decode_req.waiting_for_input = True
            elif poll == KVPoll.Failed:
                error_message = f"Decode handshake failed for request rank={self.tp_rank} {decode_req.req.rid=} {decode_req.req.bootstrap_room=}"
                try:
                    decode_req.kv_receiver.failure_exception()
                except Exception as e:
                    error_message += f" with exception {e}"
                logger.error(error_message)
                prepare_abort(
                    decode_req.req,
                    error_message,
                    status_code=HTTPStatus.INTERNAL_SERVER_ERROR,
                )

    def pop_preallocated(self) -> List[DecodeRequest]:
        """Pop the preallocated requests from the pending queue (FIFO)."""
        self._update_handshake_waiters()

        preallocated_reqs = []
        indices_to_remove = set()
        allocatable_tokens = self._allocatable_tokens()

        # First, remove all failed requests from the queue
        for i, decode_req in enumerate(self.queue):
            if isinstance(decode_req.req.finished_reason, FINISH_ABORT):
                self.scheduler.stream_output(
                    [decode_req.req], decode_req.req.return_logprob
                )
                indices_to_remove.add(i)

        for i, decode_req in enumerate(self.queue):
            if i in indices_to_remove:
                continue

            if not decode_req.waiting_for_input:
                continue

            if self.req_to_token_pool.available_size() <= 0:
                break

            if self.req_to_metadata_buffer_idx_allocator.available_size() <= 0:
                break

            required_tokens_for_request = (
                len(decode_req.req.origin_input_ids) + self.num_reserved_decode_tokens
            )

            if required_tokens_for_request > allocatable_tokens:
                break

            allocatable_tokens -= required_tokens_for_request
            self._pre_alloc(decode_req.req)

            kv_indices = (
                self.req_to_token_pool.req_to_token[decode_req.req.req_pool_idx][
                    : len(decode_req.req.origin_input_ids)
                ]
                .cpu()
                .numpy()
                .astype(np.int64)
            )

            decode_req.metadata_buffer_index = (
                self.req_to_metadata_buffer_idx_allocator.alloc()
            )
            assert decode_req.metadata_buffer_index is not None
            page_indices = kv_to_page_indices(
                kv_indices, self.token_to_kv_pool_allocator.page_size
            )
            decode_req.kv_receiver.init(page_indices, decode_req.metadata_buffer_index)
            preallocated_reqs.append(decode_req)
            indices_to_remove.add(i)

        self.queue = [
            entry for i, entry in enumerate(self.queue) if i not in indices_to_remove
        ]

        return preallocated_reqs

    def _allocatable_tokens(self) -> int:
        allocatable_tokens = (
            self.token_to_kv_pool_allocator.available_size()
            - self.num_reserved_decode_tokens
            * (
                len(self.scheduler.running_batch.reqs)
                + len(self.transfer_queue.queue)
                + len(self.scheduler.waiting_queue)
            )
        )

        # Note: if the last fake extend just finishes, and we enter `pop_preallocated` immediately in the next iteration
        #       the extend batch is not in any queue, so we need to explicitly add the tokens slots here
        if (
            self.scheduler.last_batch
            and self.scheduler.last_batch.forward_mode.is_extend()
        ):
            allocatable_tokens -= self.num_reserved_decode_tokens * len(
                self.scheduler.last_batch.reqs
            )

        return allocatable_tokens

    def _pre_alloc(self, req: Req) -> torch.Tensor:
        """Pre-allocate the memory for req_to_token and token_kv_pool"""
        req_pool_indices = self.req_to_token_pool.alloc(1)

        assert req_pool_indices is not None

        req.req_pool_idx = req_pool_indices[0]
        if self.token_to_kv_pool_allocator.page_size == 1:
            kv_loc = self.token_to_kv_pool_allocator.alloc(
                len(req.origin_input_ids) + max(len(req.output_ids) - 1, 0)
            )
        else:
            num_tokens = len(req.origin_input_ids) + max(len(req.output_ids) - 1, 0)
            kv_loc = self.token_to_kv_pool_allocator.alloc_extend(
                prefix_lens=torch.tensor(
                    [0],
                    dtype=torch.int64,
                    device=self.token_to_kv_pool_allocator.device,
                ),
                seq_lens=torch.tensor(
                    [num_tokens],
                    dtype=torch.int64,
                    device=self.token_to_kv_pool_allocator.device,
                ),
                last_loc=torch.tensor(
                    [-1],
                    dtype=torch.int64,
                    device=self.token_to_kv_pool_allocator.device,
                ),
                extend_num_tokens=num_tokens,
            )
        assert kv_loc is not None

        self.req_to_token_pool.write((req.req_pool_idx, slice(0, len(kv_loc))), kv_loc)

        # populate metadata
        req.fill_ids = req.origin_input_ids + req.output_ids
        req.extend_input_len = len(req.origin_input_ids)

        return kv_loc


class DecodeTransferQueue:
    """
    Store the requests that is polling kv
    """

    def __init__(
        self,
        gloo_group: ProcessGroup,
        req_to_metadata_buffer_idx_allocator: ReqToMetadataIdxAllocator,
        metadata_buffers: MetadataBuffers,
        scheduler: Scheduler,
        tree_cache: BasePrefixCache,
    ):
        self.queue: List[DecodeRequest] = []
        self.gloo_group = gloo_group
        self.req_to_metadata_buffer_idx_allocator = req_to_metadata_buffer_idx_allocator
        self.metadata_buffers = metadata_buffers
        self.scheduler = scheduler
        self.tree_cache = tree_cache

    def add(self, decode_req: DecodeRequest) -> None:
        self.queue.append(decode_req)

    def extend(self, decode_reqs: List[DecodeRequest]) -> None:
        self.queue.extend(decode_reqs)

    def pop_transferred(self) -> List[DecodeRequest]:
        if not self.queue:
            return []

        polls = poll_and_all_reduce(
            [decode_req.kv_receiver for decode_req in self.queue], self.gloo_group
        )

        transferred_reqs = []
        indices_to_remove = set()
        for i, (decode_req, poll) in enumerate(zip(self.queue, polls)):
            if poll == KVPoll.Failed:
                error_message = f"Decode transfer failed for request {decode_req.req.rid=} {decode_req.req.bootstrap_room=}"
                try:
                    decode_req.kv_receiver.failure_exception()
                except Exception as e:
                    error_message += f" with exception {e}"
                logger.error(error_message)
                prepare_abort(
                    decode_req.req,
                    error_message,
                    status_code=HTTPStatus.INTERNAL_SERVER_ERROR,
                )
                self.scheduler.stream_output(
                    [decode_req.req], decode_req.req.return_logprob
                )
                # unlock the kv cache or it will have memory leak
                self.tree_cache.cache_finished_req(decode_req.req)
                indices_to_remove.add(i)
                continue
            elif poll == KVPoll.Success:

                idx = decode_req.metadata_buffer_index
                (
                    output_id,
                    output_token_logprobs_val,
                    output_token_logprobs_idx,
                    output_top_logprobs_val,
                    output_top_logprobs_idx,
                ) = self.metadata_buffers.get_buf(idx)

                decode_req.req.output_ids.append(output_id[0].item())

                if decode_req.req.return_logprob:
                    decode_req.req.output_token_logprobs_val.append(
                        output_token_logprobs_val[0].item()
                    )
                    decode_req.req.output_token_logprobs_idx.append(
                        output_token_logprobs_idx[0].item()
                    )
                    decode_req.req.output_top_logprobs_val.append(
                        output_top_logprobs_val[
                            : decode_req.req.top_logprobs_num
                        ].tolist()
                    )
                    decode_req.req.output_top_logprobs_idx.append(
                        output_top_logprobs_idx[
                            : decode_req.req.top_logprobs_num
                        ].tolist()
                    )

                transferred_reqs.append(decode_req.req)
                indices_to_remove.add(i)
            elif poll in [
                KVPoll.Bootstrapping,
                KVPoll.WaitingForInput,
                KVPoll.Transferring,
            ]:
                pass
            else:
                raise ValueError(f"Unexpected poll case: {poll}")

        for i in indices_to_remove:
            idx = self.queue[i].metadata_buffer_index
            assert idx != -1
            self.req_to_metadata_buffer_idx_allocator.free(idx)

        self.queue = [
            entry for i, entry in enumerate(self.queue) if i not in indices_to_remove
        ]

        return transferred_reqs


class SchedulerDisaggregationDecodeMixin:

    def _prepare_idle_batch_and_run(self, batch, delay_process=False):
        batch, _ = self.prepare_dp_attn_batch(batch)
        result = None
        if batch:
            result = self.run_batch(batch)
            if not delay_process:
                self.process_batch_result(batch, result)
        return batch, result

    @torch.no_grad()
    def event_loop_normal_disagg_decode(self: Scheduler):
        """A normal scheduler loop for decode worker in disaggregation mode."""

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
            # polling and allocating kv cache
            self.process_decode_queue()
            batch = self.get_next_disagg_decode_batch_to_run()
            self.cur_batch = batch

            prepare_dp_attn_flag = (
                self.server_args.enable_dp_attention
                or self.server_args.enable_sp_layernorm
            )

            if batch:
                # Generate fake extend output.
                if batch.forward_mode.is_extend():
                    # Note: Logprobs should be handled on the prefill engine.
                    self.stream_output(
                        batch.reqs, any(req.return_logprob for req in batch.reqs)
                    )
                    if prepare_dp_attn_flag:
                        self._prepare_idle_batch_and_run(None)
                else:
                    if prepare_dp_attn_flag:
                        self.prepare_dp_attn_batch(batch)
                    result = self.run_batch(batch)
                    self.process_batch_result(batch, result)
            elif prepare_dp_attn_flag:
                batch, _ = self._prepare_idle_batch_and_run(None)

            if batch is None and (
                len(self.disagg_decode_transfer_queue.queue)
                + len(self.disagg_decode_prealloc_queue.queue)
                == 0
            ):
                # When the server is idle, do self-check and re-init some states
                self.check_memory()
                self.new_token_ratio = self.init_new_token_ratio

            self.last_batch = batch

    @torch.no_grad()
    def event_loop_overlap_disagg_decode(self: Scheduler):
        result_queue = deque()
        self.last_batch: Optional[ScheduleBatch] = None
        self.last_batch_in_queue = False  # last batch is modified in-place, so we need another variable to track if it's extend

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
            # polling and allocating kv cache
            self.process_decode_queue()
            batch = self.get_next_disagg_decode_batch_to_run()
            self.cur_batch = batch
            last_batch_in_queue = False

            prepare_dp_attn_flag = (
                self.server_args.enable_dp_attention
                or self.server_args.enable_sp_layernorm
            )

            if batch:
                # Generate fake extend output.
                if batch.forward_mode.is_extend():
                    # Note: Logprobs should be handled on the prefill engine.
                    self.stream_output(
                        batch.reqs, any(req.return_logprob for req in batch.reqs)
                    )
                    if prepare_dp_attn_flag:
                        batch_, result = self._prepare_idle_batch_and_run(
                            None, delay_process=True
                        )
                        if batch_:
                            result_queue.append((batch_.copy(), result))
                            last_batch_in_queue = True
                else:
                    if prepare_dp_attn_flag:
                        self.prepare_dp_attn_batch(batch)
                    result = self.run_batch(batch)
                    result_queue.append((batch.copy(), result))

                    if (self.last_batch is None) or (not self.last_batch_in_queue):
                        # Create a dummy first batch to start the pipeline for overlap schedule.
                        # It is now used for triggering the sampling_info_done event.
                        tmp_batch = ScheduleBatch(
                            reqs=None,
                            forward_mode=ForwardMode.DUMMY_FIRST,
                            next_batch_sampling_info=self.tp_worker.cur_sampling_info,
                        )
                        self.set_next_batch_sampling_info_done(tmp_batch)
                    last_batch_in_queue = True

            elif prepare_dp_attn_flag:
                batch, result = self._prepare_idle_batch_and_run(
                    None, delay_process=True
                )
                if batch:
                    result_queue.append((batch.copy(), result))
                    last_batch_in_queue = True

            # Process the results of the previous batch but skip if the last batch is extend
            if self.last_batch and self.last_batch_in_queue:
                tmp_batch, tmp_result = result_queue.popleft()
                tmp_batch.next_batch_sampling_info = (
                    self.tp_worker.cur_sampling_info if batch else None
                )
                self.process_batch_result(tmp_batch, tmp_result)

            if batch is None and (
                len(self.disagg_decode_transfer_queue.queue)
                + len(self.disagg_decode_prealloc_queue.queue)
                == 0
            ):
                # When the server is idle, do self-check and re-init some states
                self.check_memory()
                self.new_token_ratio = self.init_new_token_ratio

            self.last_batch = batch
            self.last_batch_in_queue = last_batch_in_queue

    def get_next_disagg_decode_batch_to_run(
        self: Scheduler,
    ) -> Optional[Tuple[ScheduleBatch, bool]]:
        """Create fake completed prefill if possible and merge with running batch"""
        # Merge the prefill batch into the running batch
        last_batch = self.last_batch
        if last_batch and last_batch.forward_mode.is_extend():
            # chunked prefill doesn't happen in decode instance.
            assert self.chunked_req is None
            # Filter finished batches.
            last_batch.filter_batch()
            if not last_batch.is_empty():
                if self.running_batch.is_empty():
                    self.running_batch = last_batch
                else:
                    # merge running_batch with prefill batch
                    self.running_batch.merge_batch(last_batch)

        new_prebuilt_batch = self.get_new_prebuilt_batch()

        ret: Optional[ScheduleBatch] = None
        if new_prebuilt_batch:
            ret = new_prebuilt_batch
        else:
            if self.running_batch.is_empty():
                ret = None
            else:
                self.running_batch = self.update_running_batch(self.running_batch)
                ret = self.running_batch if not self.running_batch.is_empty() else None

        return ret

    def get_new_prebuilt_batch(self: Scheduler) -> Optional[ScheduleBatch]:
        """Create a schedulebatch for fake completed prefill"""
        if self.grammar_queue:
            self.move_ready_grammar_requests()

        if len(self.waiting_queue) == 0:
            return None

        curr_batch_size = self.running_batch.batch_size()

        batch_size = min(self.req_to_token_pool.size, self.max_running_requests)

        num_not_used_batch = batch_size - curr_batch_size

        # pop req from waiting queue
        can_run_list: List[Req] = []
        waiting_queue: List[Req] = []

        for i in range(len(self.waiting_queue)):
            req = self.waiting_queue[i]
            # we can only add at least `num_not_used_batch` new batch to the running queue
            if i < num_not_used_batch:
                can_run_list.append(req)
                req.init_next_round_input(self.tree_cache)
            else:
                waiting_queue.append(req)

        self.waiting_queue = waiting_queue
        if len(can_run_list) == 0:
            return None

        # construct a schedule batch with those requests and mark as decode
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
            self.token_to_kv_pool_allocator,
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
            self.spec_algorithm,
            self.server_args.enable_custom_logit_processor,
        )

        # construct fake completed prefill
        new_batch.prepare_for_prebuilt_extend()
        new_batch.process_prebuilt_extend(self.server_args, self.model_config)

        return new_batch

    def process_decode_queue(self: Scheduler):
        req_conns = self.disagg_decode_prealloc_queue.pop_preallocated()
        self.disagg_decode_transfer_queue.extend(req_conns)
        alloc_reqs = (
            self.disagg_decode_transfer_queue.pop_transferred()
        )  # the requests which kv has arrived
        self.waiting_queue.extend(alloc_reqs)