bench_serving.py 63.5 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/backend_request_func.py
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/benchmark_serving.py

"""
Benchmark online serving with dynamic requests.

Usage:
python3 -m sglang.bench_serving --backend sglang --num-prompt 10

python3 -m sglang.bench_serving --backend sglang --dataset-name random --num-prompts 3000 --random-input 1024 --random-output 1024 --random-range-ratio 0.5
"""

import argparse
import asyncio
import json
import os
import pickle
import random
import resource
import sys
import time
import traceback
import warnings
from argparse import ArgumentParser
from dataclasses import dataclass, field
from datetime import datetime
from json import JSONDecodeError
from pathlib import Path
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union

import aiohttp
import numpy as np
import requests
from tqdm.asyncio import tqdm
from transformers import (
    AutoTokenizer,
    PreTrainedTokenizer,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
)

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
ASSISTANT_SUFFIX = "Assistant:"

global args


# don't want to import sglang package here
def _get_bool_env_var(name: str, default: str = "false") -> bool:
    value = os.getenv(name, default)
    return value.lower() in ("true", "1")


@dataclass
class RequestFuncInput:
    prompt: str
    api_url: str
    prompt_len: int
    output_len: int
    model: str
    lora_name: str
    image_data: str
    extra_request_body: Dict[str, Any]


@dataclass
class RequestFuncOutput:
    generated_text: str = ""
    success: bool = False
    latency: float = 0.0
    ttft: float = 0.0  # Time to first token
    itl: List[float] = field(default_factory=list)  # List of inter-token latencies
    prompt_len: int = 0
    error: str = ""
    output_len: int = 0

    @staticmethod
    def init_new(request_func_input: RequestFuncInput):
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len
        return output


def remove_prefix(text: str, prefix: str) -> str:
    return text[len(prefix) :] if text.startswith(prefix) else text


def remove_suffix(text: str, suffix: str) -> str:
    return text[: -len(suffix)] if text.endswith(suffix) else text


def get_auth_headers() -> Dict[str, str]:
    api_key = os.environ.get("OPENAI_API_KEY")
    if api_key:
        return {"Authorization": f"Bearer {api_key}"}
    else:
        return {}


# trt llm does not support ignore_eos
# https://github.com/triton-inference-server/tensorrtllm_backend/issues/505
async def async_request_trt_llm(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith("generate_stream")

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "accumulate_tokens": True,
            "text_input": request_func_input.prompt,
            "temperature": 0.000001,
            "top_p": 1.0,
            "max_tokens": request_func_input.output_len,
            "stream": True,
            "min_length": request_func_input.output_len,
            "end_id": 1048576,
            **request_func_input.extra_request_body,
        }
        if args.disable_ignore_eos:
            del payload["min_length"]
            del payload["end_id"]
        output = RequestFuncOutput.init_new(request_func_input)

        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data:")

                        data = json.loads(chunk)
                        output.generated_text += data["text_output"]
                        timestamp = time.perf_counter()
                        # First token
                        if ttft == 0.0:
                            ttft = timestamp - st
                            output.ttft = ttft

                        # Decoding phase
                        else:
                            output.itl.append(timestamp - most_recent_timestamp)

                        most_recent_timestamp = timestamp

                    output.latency = most_recent_timestamp - st
                    output.success = True
                    output.output_len = request_func_input.output_len

                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


# set ignore_eos True by default
async def async_request_openai_completions(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith(
        "completions"
    ), "OpenAI Completions API URL must end with 'completions'."

    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
            "prompt": prompt,
            "temperature": 0.0,
            "best_of": 1,
            "max_tokens": request_func_input.output_len,
            "stream": not args.disable_stream,
            "ignore_eos": not args.disable_ignore_eos,
            **request_func_input.extra_request_body,
        }
        headers = get_auth_headers()

        output = RequestFuncOutput.init_new(request_func_input)

        generated_text = ""
        output_len = request_func_input.output_len
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["choices"][0]["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                generated_text += data["choices"][0]["text"]
                                output_len = (data.get("usage") or {}).get(
                                    "completion_tokens", output_len
                                )

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                    output.output_len = output_len
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


async def async_request_truss(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url

    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
            "prompt": prompt,
            "temperature": 0.0,
            "best_of": 1,
            "max_tokens": request_func_input.output_len,
            "stream": not args.disable_stream,
            "ignore_eos": not args.disable_ignore_eos,
            **request_func_input.extra_request_body,
        }
        headers = get_auth_headers()

        output = RequestFuncOutput.init_new(request_func_input)

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["choices"][0]["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                generated_text += data["choices"][0]["text"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                    output.output_len = request_func_input.output_len
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


async def async_request_sglang_generate(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "text": prompt,
            "sampling_params": {
                "temperature": 0.0,
                "max_new_tokens": request_func_input.output_len,
                "ignore_eos": not args.disable_ignore_eos,
            },
            "stream": not args.disable_stream,
            "lora_path": request_func_input.lora_name,
            "return_logprob": args.return_logprob,
            "logprob_start_len": -1,
            **request_func_input.extra_request_body,
        }

        # Add image data if available
        if request_func_input.image_data:
            payload["image_data"] = request_func_input.image_data

        headers = get_auth_headers()

        output = RequestFuncOutput.init_new(request_func_input)

        generated_text = ""
        output_len = request_func_input.output_len
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        last_output_len = 0
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue
                        # print(chunk_bytes)

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["text"]:
                                timestamp = time.perf_counter()
                                generated_text = data["text"]
                                output_len = data["meta_info"]["completion_tokens"]

                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    num_new_tokens = output_len - last_output_len
                                    if num_new_tokens == 0:
                                        continue
                                    adjust_itl = (
                                        timestamp - most_recent_timestamp
                                    ) / num_new_tokens
                                    output.itl.extend([adjust_itl] * num_new_tokens)

                                most_recent_timestamp = timestamp
                                last_output_len = output_len

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                    output.output_len = output_len
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))
            print(f"{output.error=}")

    if pbar:
        pbar.update(1)
    return output


async def async_request_gserver(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    raise NotImplementedError()


async def async_request_profile(api_url: str) -> RequestFuncOutput:
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        output = RequestFuncOutput()
        try:
            async with session.post(url=api_url) as response:
                if response.status == 200:
                    output.success = True
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    return output


def get_model(pretrained_model_name_or_path: str) -> str:
    if os.getenv("SGLANG_USE_MODELSCOPE", "false").lower() == "true":
        import huggingface_hub.constants
        from modelscope import snapshot_download

        model_path = snapshot_download(
            model_id=pretrained_model_name_or_path,
            local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
            ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
        )

        return model_path
    return pretrained_model_name_or_path


def get_tokenizer(
    pretrained_model_name_or_path: str,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
    assert (
        pretrained_model_name_or_path is not None
        and pretrained_model_name_or_path != ""
    )
    if pretrained_model_name_or_path.endswith(
        ".json"
    ) or pretrained_model_name_or_path.endswith(".model"):
        from sglang.srt.hf_transformers_utils import get_tokenizer

        return get_tokenizer(pretrained_model_name_or_path)

    if pretrained_model_name_or_path is not None and not os.path.exists(
        pretrained_model_name_or_path
    ):
        pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
    return AutoTokenizer.from_pretrained(
        pretrained_model_name_or_path, trust_remote_code=True
    )


def get_dataset(args, tokenizer):
    if args.dataset_name == "sharegpt":
        input_requests = sample_sharegpt_requests(
            dataset_path=args.dataset_path,
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            fixed_output_len=args.sharegpt_output_len,
            context_len=args.sharegpt_context_len,
            prompt_suffix=args.prompt_suffix,
            apply_chat_template=args.apply_chat_template,
        )
    elif args.dataset_name.startswith("random"):
        input_requests = sample_random_requests(
            input_len=args.random_input_len,
            output_len=args.random_output_len,
            num_prompts=args.num_prompts,
            range_ratio=args.random_range_ratio,
            tokenizer=tokenizer,
            dataset_path=args.dataset_path,
            random_sample=args.dataset_name == "random",
        )
    elif args.dataset_name == "generated-shared-prefix":
        input_requests = sample_generated_shared_prefix_requests(
            num_groups=args.gsp_num_groups,
            prompts_per_group=args.gsp_prompts_per_group,
            system_prompt_len=args.gsp_system_prompt_len,
            question_len=args.gsp_question_len,
            output_len=args.gsp_output_len,
            tokenizer=tokenizer,
            args=args,
        )
    elif args.dataset_name == "mmmu":
        input_requests = sample_mmmu_requests(
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            fixed_output_len=args.random_output_len,
            random_sample=True,
        )
    else:
        raise ValueError(f"Unknown dataset: {args.dataset_name}")
    return input_requests


ASYNC_REQUEST_FUNCS = {
    "sglang": async_request_sglang_generate,
    "sglang-native": async_request_sglang_generate,
    "sglang-oai": async_request_openai_completions,
    "vllm": async_request_openai_completions,
    "lmdeploy": async_request_openai_completions,
    "trt": async_request_trt_llm,
    "gserver": async_request_gserver,
    "truss": async_request_truss,
}


@dataclass
class BenchmarkMetrics:
    completed: int
    total_input: int
    total_output: int
    total_output_retokenized: int
    request_throughput: float
    input_throughput: float
    output_throughput: float
    output_throughput_retokenized: float
    total_throughput: float
    total_throughput_retokenized: float
    mean_ttft_ms: float
    median_ttft_ms: float
    std_ttft_ms: float
    p99_ttft_ms: float
    mean_tpot_ms: float
    median_tpot_ms: float
    std_tpot_ms: float
    p99_tpot_ms: float
    mean_itl_ms: float
    median_itl_ms: float
    std_itl_ms: float
    p95_itl_ms: float
    p99_itl_ms: float
    max_itl_ms: float
    mean_e2e_latency_ms: float
    median_e2e_latency_ms: float
    std_e2e_latency_ms: float
    p99_e2e_latency_ms: float
    concurrency: float


SHAREGPT_URL = "https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json"


def download_and_cache_file(url: str, filename: Optional[str] = None):
    """Read and cache a file from a url."""
    if filename is None:
        filename = os.path.join("/tmp", url.split("/")[-1])

    # Check if the cache file already exists
    if is_file_valid_json(filename):
        return filename

    print(f"Downloading from {url} to {filename}")

    # Stream the response to show the progress bar
    response = requests.get(url, stream=True)
    response.raise_for_status()  # Check for request errors

    # Total size of the file in bytes
    total_size = int(response.headers.get("content-length", 0))
    chunk_size = 1024  # Download in chunks of 1KB

    # Use tqdm to display the progress bar
    with open(filename, "wb") as f, tqdm(
        desc=filename,
        total=total_size,
        unit="B",
        unit_scale=True,
        unit_divisor=1024,
    ) as bar:
        for chunk in response.iter_content(chunk_size=chunk_size):
            f.write(chunk)
            bar.update(len(chunk))

    return filename


def is_file_valid_json(path):
    if not os.path.isfile(path):
        return False

    # TODO can fuse into the real file open later
    try:
        with open(path) as f:
            json.load(f)
        return True
    except JSONDecodeError as e:
        print(
            f"{path} exists but json loading fails ({e=}), thus treat as invalid file"
        )
        return False


@dataclass
class DatasetRow:
    prompt: str
    prompt_len: int
    output_len: int


def sample_mmmu_requests(
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    fixed_output_len: Optional[int] = None,
    random_sample: bool = True,
) -> List[DatasetRow]:
    """
    Sample requests from the MMMU dataset using HuggingFace datasets.

    Args:
        num_requests: Number of requests to sample.
        tokenizer: Tokenizer to use for token counting.
        fixed_output_len: If provided, use this fixed output length for all requests.
        random_sample: Whether to randomly sample or take the first N.

    Returns:
        List of tuples (prompt, prompt_token_len, output_token_len).
    """
    try:
        import base64
        import io

        from datasets import load_dataset
    except ImportError:
        raise ImportError("Please install datasets: pip install datasets")

    print("Loading MMMU dataset from HuggingFace...")

    try:
        print("Attempting to load MMMU Math dataset...")
        mmmu_dataset = load_dataset("MMMU/MMMU", "Math", split="test")
        print(
            f"Successfully loaded MMMU Math dataset from HuggingFace with {len(mmmu_dataset)} examples"
        )
    except Exception as e:
        print(f"Failed to load MMMU Math dataset: {e}")
        raise ValueError(f"Failed to load MMMU dataset: {e}")

    # Sample from the dataset
    if len(mmmu_dataset) > num_requests:
        if random_sample:
            # Random sample
            indices = random.sample(range(len(mmmu_dataset)), num_requests)
            sample_dataset = mmmu_dataset.select(indices)
        else:
            # Take first N
            sample_dataset = mmmu_dataset.select(
                range(min(num_requests, len(mmmu_dataset)))
            )
    else:
        print(f"Dataset has less than {num_requests} examples, using all examples")
        sample_dataset = mmmu_dataset

    print(f"Selected {len(sample_dataset)} examples for benchmarking")

    # Create prompts
    filtered_dataset = []

    for i, example in enumerate(sample_dataset):
        try:
            # Extract image_1
            image = example.get("image_1")

            if image is not None:
                if hasattr(image, "save"):
                    # Convert RGBA images to RGB before encoding
                    if image.mode == "RGBA":
                        image = image.convert("RGB")

                    # Encode image to base64
                    buffered = io.BytesIO()
                    image.save(buffered, format="JPEG")
                    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
                    image_path = f"data:image/jpeg;base64,{img_str}"
                else:
                    continue

                # Extract the question
                question = example.get("question")

                # Create the prompt with image, question
                prompt = f"Question: {question}\n\nAnswer: "
                prompt = tokenizer.apply_chat_template(
                    [
                        {
                            "role": "user",
                            "content": [
                                {"type": "image_url", "image_url": {"url": image_path}},
                                {"type": "text", "text": prompt},
                            ],
                        }
                    ],
                    add_generation_prompt=True,
                    tokenize=False,
                )
                prompt = f"<image>{image_path}</image>{prompt}"

                # Calculate token lengths
                # Note: This is approximate since we're not rendering the actual image tokens
                prompt_token_ids = tokenizer.encode(prompt)
                prompt_len = (
                    len(prompt_token_ids) + 512
                )  # Add estimate for image tokens

                output_len = fixed_output_len if fixed_output_len is not None else 256

                filtered_dataset.append(
                    DatasetRow(
                        prompt=prompt, prompt_len=prompt_len, output_len=output_len
                    )
                )

        except Exception as e:
            print(f"Error processing example {i}: {e}")

    print(f"\nCreated {len(filtered_dataset)} MMMU prompts")
    return filtered_dataset


def sample_sharegpt_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    fixed_output_len: Optional[int] = None,
    context_len: Optional[int] = None,
    prompt_suffix: Optional[str] = "",
    apply_chat_template=False,
) -> List[DatasetRow]:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

    # Download sharegpt if necessary
    if not is_file_valid_json(dataset_path) and dataset_path == "":
        dataset_path = download_and_cache_file(SHAREGPT_URL)

    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)

    # Filter out the conversations with less than 2 turns.
    dataset = [
        data
        for data in dataset
        if len(data.get("conversations", data.get("conversation", []))) >= 2
    ]
    # Only keep the first two turns of each conversation.
    dataset = [
        (
            data.get("conversations", data.get("conversation", []))[0]["value"],
            data.get("conversations", data.get("conversation", []))[1]["value"],
        )
        for data in dataset
    ]

    # Shuffle the dataset.
    random.shuffle(dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: List[DatasetRow] = []
    for i in range(len(dataset)):
        if len(filtered_dataset) == num_requests:
            break

        # Tokenize the prompts and completions.
        prompt = dataset[i][0]
        if prompt_suffix:
            prompt = (
                remove_suffix(prompt, ASSISTANT_SUFFIX)
                + prompt_suffix
                + ASSISTANT_SUFFIX
            )

        if apply_chat_template:
            prompt = tokenizer.apply_chat_template(
                [{"role": "user", "content": prompt}],
                add_generation_prompt=True,
                tokenize=False,
            )
            prompt = prompt.replace(tokenizer.bos_token, "")

        prompt_token_ids = tokenizer.encode(prompt)
        completion = dataset[i][1]
        completion_token_ids = tokenizer.encode(completion)
        prompt_len = len(prompt_token_ids)
        output_len = (
            len(completion_token_ids) if fixed_output_len is None else fixed_output_len
        )

        if prompt_len < 2 or output_len < 2:
            # Prune too short sequences.
            continue

        if context_len and prompt_len + output_len > context_len:
            # Prune too long sequences.
            continue

        filtered_dataset.append(
            DatasetRow(prompt=prompt, prompt_len=prompt_len, output_len=output_len)
        )

    print(f"#Input tokens: {np.sum([x.prompt_len for x in filtered_dataset])}")
    print(f"#Output tokens: {np.sum([x.output_len for x in filtered_dataset])}")
    return filtered_dataset


def sample_random_requests(
    input_len: int,
    output_len: int,
    num_prompts: int,
    range_ratio: float,
    tokenizer: PreTrainedTokenizerBase,
    dataset_path: str,
    random_sample: bool = True,
    return_text: bool = True,
) -> List[DatasetRow]:
    input_lens = np.random.randint(
        max(int(input_len * range_ratio), 1),
        input_len + 1,
        size=num_prompts,
    )
    output_lens = np.random.randint(
        int(output_len * range_ratio),
        output_len + 1,
        size=num_prompts,
    )

    if random_sample:
        # Sample token ids from ShareGPT and repeat/truncate them to satisfy the input_lens

        # Download sharegpt if necessary
        if not is_file_valid_json(dataset_path):
            dataset_path = download_and_cache_file(SHAREGPT_URL)

        # Load the dataset.
        with open(dataset_path) as f:
            dataset = json.load(f)
        # Filter out the conversations with less than 2 turns.
        dataset = [
            data
            for data in dataset
            if len(data.get("conversations", data.get("conversation", []))) >= 2
        ]
        # Only keep the first two turns of each conversation.
        dataset = [
            (
                data.get("conversations", data.get("conversation", []))[0]["value"],
                data.get("conversations", data.get("conversation", []))[1]["value"],
            )
            for data in dataset
        ]
        # Shuffle the dataset.
        random.shuffle(dataset)

        # Filter out sequences that are too long or too short
        input_requests: List[DatasetRow] = []
        for data in dataset:
            i = len(input_requests)
            if i == num_prompts:
                break

            # Tokenize the prompts and completions.
            prompt = data[0]
            prompt_token_ids = tokenizer.encode(prompt)
            prompt_len = len(prompt_token_ids)

            # Skip empty prompt
            if prompt_len == 0:
                continue

            if prompt_len > input_lens[i]:
                input_ids = prompt_token_ids[: input_lens[i]]
            else:
                ratio = (input_lens[i] + prompt_len - 1) // prompt_len
                input_ids = (prompt_token_ids * ratio)[: input_lens[i]]
            input_content = input_ids
            if return_text:
                input_content = tokenizer.decode(input_content)
            input_requests.append(
                DatasetRow(
                    prompt=input_content,
                    prompt_len=int(input_lens[i]),
                    output_len=int(output_lens[i]),
                )
            )
    else:
        # Sample token ids from random integers. This can cause some NaN issues.
        offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
        input_requests = []
        for i in range(num_prompts):
            input_content = [
                (offsets[i] + i + j) % tokenizer.vocab_size
                for j in range(input_lens[i])
            ]
            if return_text:
                input_content = tokenizer.decode(input_content)
            input_requests.append(
                DatasetRow(
                    prompt=input_content,
                    prompt_len=int(input_lens[i]),
                    output_len=int(output_lens[i]),
                )
            )

    print(f"#Input tokens: {np.sum(input_lens)}")
    print(f"#Output tokens: {np.sum(output_lens)}")
    return input_requests


def gen_prompt(tokenizer, token_num):
    """Generate a random prompt of specified token length using tokenizer vocabulary."""
    all_available_tokens = list(tokenizer.get_vocab().values())
    selected_tokens = random.choices(all_available_tokens, k=token_num)
    return tokenizer.decode(selected_tokens)


def get_gen_prefix_cache_path(args, tokenizer):
    """Create cache directory under ~/.cache/sglang/benchmark"""
    cache_dir = Path.home() / ".cache" / "sglang" / "benchmark"

    # Create a unique cache filename based on the generation parameters
    cache_key = (
        f"gen_shared_prefix_{args.gsp_num_groups}_{args.gsp_prompts_per_group}_"
        f"{args.gsp_system_prompt_len}_{args.gsp_question_len}_{args.gsp_output_len}_"
        f"{tokenizer.__class__.__name__}.pkl"
    )
    return cache_dir / cache_key


def sample_generated_shared_prefix_requests(
    num_groups: int,
    prompts_per_group: int,
    system_prompt_len: int,
    question_len: int,
    output_len: int,
    tokenizer: PreTrainedTokenizerBase,
    args: argparse.Namespace,
) -> List[DatasetRow]:
    """Generate benchmark requests with shared system prompts using random tokens and caching."""
    cache_path = get_gen_prefix_cache_path(args, tokenizer)

    # Try to load from cache first
    if cache_path.exists():
        print(f"\nLoading cached generated input data from {cache_path}")
        with open(cache_path, "rb") as f:
            return pickle.load(f)

    print("\nGenerating new input data...")

    # Generate system prompts for each group
    system_prompts = []
    for _ in range(num_groups):
        system_prompt = gen_prompt(tokenizer, system_prompt_len)
        system_prompts.append(system_prompt)

    # Generate questions
    questions = []
    for _ in range(num_groups * prompts_per_group):
        question = gen_prompt(tokenizer, question_len)
        questions.append(question)

    # Combine system prompts with questions
    input_requests = []
    total_input_tokens = 0
    total_output_tokens = 0

    for group_idx in tqdm(range(num_groups), desc="Generating system prompt"):
        system_prompt = system_prompts[group_idx]
        for prompt_idx in tqdm(
            range(prompts_per_group), desc="Generating questions", leave=False
        ):
            question = questions[group_idx * prompts_per_group + prompt_idx]
            full_prompt = f"{system_prompt}\n\n{question}"
            prompt_len = len(tokenizer.encode(full_prompt))

            input_requests.append(
                DatasetRow(
                    prompt=full_prompt, prompt_len=prompt_len, output_len=output_len
                )
            )
            total_input_tokens += prompt_len
            total_output_tokens += output_len

    # Shuffle questions
    random.shuffle(input_requests)

    # Print statistics
    print(f"\nGenerated shared prefix dataset statistics:")
    print(f"Number of groups: {num_groups}")
    print(f"Prompts per group: {prompts_per_group}")
    print(f"Total prompts: {len(input_requests)}")
    print(f"Total input tokens: {total_input_tokens}")
    print(f"Total output tokens: {total_output_tokens}")
    print(
        f"Average system prompt length: {sum(len(tokenizer.encode(sp)) for sp in system_prompts) / len(system_prompts):.1f} tokens"
    )
    print(
        f"Average question length: {sum(len(tokenizer.encode(q)) for q in questions) / len(questions):.1f} tokens\n"
    )

    # Save to cache
    cache_path.parent.mkdir(parents=True, exist_ok=True)
    print(f"Caching generated input data to {cache_path}")
    with open(cache_path, "wb") as f:
        pickle.dump(input_requests, f)

    return input_requests


async def get_request(
    input_requests: List[DatasetRow],
    request_rate: float,
) -> AsyncGenerator[DatasetRow, None]:
    input_requests = iter(input_requests)
    for request in input_requests:
        yield request

        if request_rate == float("inf"):
            # If the request rate is infinity, then we don't need to wait.
            continue

        # Sample the request interval from the exponential distribution.
        interval = np.random.exponential(1.0 / request_rate)
        # The next request will be sent after the interval.
        await asyncio.sleep(interval)


def calculate_metrics(
    input_requests: List[DatasetRow],
    outputs: List[RequestFuncOutput],
    dur_s: float,
    tokenizer: PreTrainedTokenizerBase,
    backend: str,
) -> Tuple[BenchmarkMetrics, List[int]]:
    output_lens: List[int] = []
    retokenized_output_lens: List[int] = []
    total_input = 0
    completed = 0
    itls: List[float] = []
    tpots: List[float] = []
    ttfts: List[float] = []
    e2e_latencies: List[float] = []
    for i in range(len(outputs)):
        if outputs[i].success:
            output_len = outputs[i].output_len
            output_lens.append(output_len)
            retokenized_output_len = len(
                tokenizer.encode(outputs[i].generated_text, add_special_tokens=False)
            )
            retokenized_output_lens.append(retokenized_output_len)
            total_input += input_requests[i].prompt_len
            if output_len > 1:
                tpots.append((outputs[i].latency - outputs[i].ttft) / (output_len - 1))
            itls += outputs[i].itl
            ttfts.append(outputs[i].ttft)

            e2e_latencies.append(outputs[i].latency)

            completed += 1
        else:
            output_lens.append(0)
            retokenized_output_lens.append(0)

    if completed == 0:
        warnings.warn(
            "All requests failed. This is likely due to a misconfiguration "
            "on the benchmark arguments.",
            stacklevel=2,
        )
    metrics = BenchmarkMetrics(
        completed=completed,
        total_input=total_input,
        total_output=sum(output_lens),
        total_output_retokenized=sum(retokenized_output_lens),
        request_throughput=completed / dur_s,
        input_throughput=total_input / dur_s,
        output_throughput=sum(output_lens) / dur_s,
        output_throughput_retokenized=sum(retokenized_output_lens) / dur_s,
        total_throughput=(total_input + sum(output_lens)) / dur_s,
        total_throughput_retokenized=(total_input + sum(retokenized_output_lens))
        / dur_s,
        mean_ttft_ms=np.mean(ttfts or 0)
        * 1000,  # ttfts is empty if streaming is not supported by backend
        median_ttft_ms=np.median(ttfts or 0) * 1000,
        std_ttft_ms=np.std(ttfts or 0) * 1000,
        p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
        mean_tpot_ms=np.mean(tpots or 0) * 1000,
        median_tpot_ms=np.median(tpots or 0) * 1000,
        std_tpot_ms=np.std(tpots or 0) * 1000,
        p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
        mean_itl_ms=np.mean(itls or 0) * 1000,
        median_itl_ms=np.median(itls or 0) * 1000,
        std_itl_ms=np.std(itls or 0) * 1000,
        p95_itl_ms=np.percentile(itls or 0, 95) * 1000,
        p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
        max_itl_ms=np.max(itls or 0) * 1000,
        mean_e2e_latency_ms=np.mean(e2e_latencies) * 1000,
        median_e2e_latency_ms=np.median(e2e_latencies) * 1000,
        std_e2e_latency_ms=np.std(e2e_latencies) * 1000,
        p99_e2e_latency_ms=np.percentile(e2e_latencies, 99) * 1000,
        concurrency=np.sum(e2e_latencies) / dur_s,
    )

    return metrics, output_lens


async def benchmark(
    backend: str,
    api_url: str,
    base_url: str,
    model_id: str,
    tokenizer: PreTrainedTokenizerBase,
    input_requests: List[DatasetRow],
    request_rate: float,
    max_concurrency: Optional[int],
    disable_tqdm: bool,
    lora_names: List[str],
    extra_request_body: Dict[str, Any],
    profile: bool,
    pd_separated: bool = False,
    flush_cache: bool = False,
    warmup_requests: int = 1,
):
    if backend in ASYNC_REQUEST_FUNCS:
        request_func = ASYNC_REQUEST_FUNCS[backend]
    else:
        raise ValueError(f"Unknown backend: {backend}")

    # Limit concurrency
    # From https://github.com/vllm-project/vllm/pull/9390
    semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None

    async def limited_request_func(request_func_input, pbar):
        if semaphore is None:
            return await request_func(request_func_input=request_func_input, pbar=pbar)
        async with semaphore:
            return await request_func(request_func_input=request_func_input, pbar=pbar)

    # Warmup
    print(f"Starting warmup with {warmup_requests} sequences...")

    # Use the first request for all warmup iterations
    test_request = input_requests[0]
    test_prompt, test_prompt_len, test_output_len = (
        test_request.prompt,
        test_request.prompt_len,
        test_request.output_len,
    )
    if lora_names is not None and len(lora_names) != 0:
        lora_name = lora_names[0]
    else:
        lora_name = None

    if "<image>" in test_prompt:
        import re

        image_match = re.search(r"<image>(.*?)</image>(.*)", test_prompt)
        image_data = image_match.group(1) if image_match else None
        test_prompt = image_match.group(2) if image_match else test_prompt
    else:
        image_data = None

    # Create the test input once
    test_input = RequestFuncInput(
        model=model_id,
        prompt=test_prompt,
        api_url=api_url,
        prompt_len=test_prompt_len,
        output_len=min(test_output_len, 32),
        lora_name=lora_name,
        image_data=image_data,
        extra_request_body=extra_request_body,
    )

    # Run warmup requests
    warmup_tasks = []
    for _ in range(warmup_requests):
        warmup_tasks.append(
            asyncio.create_task(request_func(request_func_input=test_input))
        )

    warmup_outputs = await asyncio.gather(*warmup_tasks)

    # Check if at least one warmup request succeeded
    if warmup_requests > 0 and not any(output.success for output in warmup_outputs):
        raise ValueError(
            "Warmup failed - Please make sure benchmark arguments "
            f"are correctly specified. Error: {warmup_outputs[0].error}"
        )
    else:
        print(
            f"Warmup completed with {args.warmup_requests} sequences. Starting main benchmark run..."
        )

    # Flush cache
    if ("sglang" in backend and _get_bool_env_var("SGLANG_IS_IN_CI")) or flush_cache:
        requests.post(base_url + "/flush_cache", headers=get_auth_headers())

    time.sleep(1.0)

    # Start profiler
    if profile:
        print("Starting profiler...")
        profile_output = await async_request_profile(
            api_url=base_url + "/start_profile"
        )
        if profile_output.success:
            print("Profiler started")

    pbar = None if disable_tqdm else tqdm(total=len(input_requests))

    # Run all requests
    benchmark_start_time = time.perf_counter()
    tasks: List[asyncio.Task] = []
    async for request in get_request(input_requests, request_rate):
        prompt, prompt_len, output_len = (
            request.prompt,
            request.prompt_len,
            request.output_len,
        )
        if lora_names is not None and len(lora_names) != 0:
            idx = random.randint(0, len(lora_names) - 1)
            lora_name = lora_names[idx]
        else:
            lora_name = None

        if "<image>" in prompt:
            import re

            image_match = re.search(r"<image>(.*?)</image>(.*)", prompt)
            image_data = image_match.group(1) if image_match else None
            prompt = image_match.group(2) if image_match else prompt
        else:
            image_data = None

        request_func_input = RequestFuncInput(
            model=model_id,
            prompt=prompt,
            api_url=api_url,
            prompt_len=prompt_len,
            output_len=output_len,
            lora_name=lora_name,
            image_data=image_data,
            extra_request_body=extra_request_body,
        )
        tasks.append(
            asyncio.create_task(
                limited_request_func(request_func_input=request_func_input, pbar=pbar)
            )
        )
    outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)

    # Stop profiler
    if profile:
        print("Stopping profiler...")
        profile_output = await async_request_profile(api_url=base_url + "/stop_profile")
        if profile_output.success:
            print("Profiler stopped")

    if pbar is not None:
        pbar.close()

    if "sglang" in backend:
        server_info = requests.get(base_url + "/get_server_info")
        if server_info.status_code == 200:
            if pd_separated:
                accept_length = server_info.json()["decode"][0]["internal_states"][
                    0
                ].get("avg_spec_accept_length", None)
            else:
                accept_length = server_info.json()["internal_states"][0].get(
                    "avg_spec_accept_length", None
                )
        else:
            accept_length = None
    else:
        accept_length = None

    # Compute metrics and print results
    benchmark_duration = time.perf_counter() - benchmark_start_time
    metrics, output_lens = calculate_metrics(
        input_requests=input_requests,
        outputs=outputs,
        dur_s=benchmark_duration,
        tokenizer=tokenizer,
        backend=backend,
    )

    print("\n{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
    print("{:<40} {:<10}".format("Backend:", backend))
    print("{:<40} {:<10}".format("Traffic request rate:", request_rate))
    print(
        "{:<40} {:<10}".format(
            "Max request concurrency:",
            max_concurrency if max_concurrency else "not set",
        )
    )
    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
    print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
    print(
        "{:<40} {:<10}".format(
            "Total generated tokens (retokenized):", metrics.total_output_retokenized
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", metrics.request_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Input token throughput (tok/s):", metrics.input_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Output token throughput (tok/s):", metrics.output_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Total token throughput (tok/s):", metrics.total_throughput
        )
    )
    print("{:<40} {:<10.2f}".format("Concurrency:", metrics.concurrency))
    if accept_length:
        print("{:<40} {:<10.2f}".format("Accept length:", accept_length))
    print("{s:{c}^{n}}".format(s="End-to-End Latency", n=50, c="-"))
    print(
        "{:<40} {:<10.2f}".format("Mean E2E Latency (ms):", metrics.mean_e2e_latency_ms)
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Median E2E Latency (ms):", metrics.median_e2e_latency_ms
        )
    )
    print("{s:{c}^{n}}".format(s="Time to First Token", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
    print("{:<40} {:<10.2f}".format("Median TTFT (ms):", metrics.median_ttft_ms))
    print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
    print("{s:{c}^{n}}".format(s="Inter-Token Latency", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
    print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
    print("{:<40} {:<10.2f}".format("P95 ITL (ms):", metrics.p95_itl_ms))
    print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
    print("{:<40} {:<10.2f}".format("Max ITL (ms):", metrics.max_itl_ms))
    print("=" * 50)

    if (
        metrics.median_ttft_ms is not None
        and metrics.mean_itl_ms is not None
        and metrics.output_throughput is not None
    ):
        result = {
            # Arguments
            "backend": args.backend,
            "dataset_name": args.dataset_name,
            "request_rate": request_rate,
            "max_concurrency": max_concurrency,
            "sharegpt_output_len": args.sharegpt_output_len,
            "random_input_len": args.random_input_len,
            "random_output_len": args.random_output_len,
            "random_range_ratio": args.random_range_ratio,
            # Results
            "duration": benchmark_duration,
            "completed": metrics.completed,
            "total_input_tokens": metrics.total_input,
            "total_output_tokens": metrics.total_output,
            "total_output_tokens_retokenized": metrics.total_output_retokenized,
            "request_throughput": metrics.request_throughput,
            "input_throughput": metrics.input_throughput,
            "output_throughput": metrics.output_throughput,
            "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
            "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
            "std_e2e_latency_ms": metrics.std_e2e_latency_ms,
            "p99_e2e_latency_ms": metrics.p99_e2e_latency_ms,
            "mean_ttft_ms": metrics.mean_ttft_ms,
            "median_ttft_ms": metrics.median_ttft_ms,
            "std_ttft_ms": metrics.std_ttft_ms,
            "p99_ttft_ms": metrics.p99_ttft_ms,
            "mean_tpot_ms": metrics.mean_tpot_ms,
            "median_tpot_ms": metrics.median_tpot_ms,
            "std_tpot_ms": metrics.std_tpot_ms,
            "p99_tpot_ms": metrics.p99_tpot_ms,
            "mean_itl_ms": metrics.mean_itl_ms,
            "median_itl_ms": metrics.median_itl_ms,
            "std_itl_ms": metrics.std_itl_ms,
            "p95_itl_ms": metrics.p95_itl_ms,
            "p99_itl_ms": metrics.p99_itl_ms,
            "concurrency": metrics.concurrency,
            "accept_length": accept_length,
        }
    else:
        print(f"Error running benchmark for request rate: {request_rate}")
        print("-" * 30)

    # Determine output file name
    if args.output_file:
        output_file_name = args.output_file
    else:
        now = datetime.now().strftime("%m%d")
        if args.dataset_name.startswith("random"):
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_{args.random_input_len}_{args.random_output_len}.jsonl"
        else:
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_sharegpt.jsonl"

    result_details = {
        "input_lens": [output.prompt_len for output in outputs],
        "output_lens": output_lens,
        "ttfts": [output.ttft for output in outputs],
        "itls": [output.itl for output in outputs],
        "generated_texts": [output.generated_text for output in outputs],
        "errors": [output.error for output in outputs],
    }

    # Append results to a JSONL file
    with open(output_file_name, "a") as file:
        if args.output_details:
            result_for_dump = result | result_details
        else:
            result_for_dump = result
        file.write(json.dumps(result_for_dump) + "\n")

    return result | result_details


def check_chat_template(model_path):
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        return "chat_template" in tokenizer.init_kwargs
    except Exception as e:
        print(f"Fail to load tokenizer config with error={e}")
        return False


def set_global_args(args_: argparse.Namespace):
    """Set the global args."""
    global args
    args = args_


def run_benchmark(args_: argparse.Namespace):
    global args
    args = args_

    # Set default value for max_concurrency if not present
    if not hasattr(args, "max_concurrency"):
        args.max_concurrency = None

    # Set default value for warmup_requests if not present
    if not hasattr(args, "warmup_requests"):
        args.warmup_requests = 1

    if not hasattr(args, "output_details"):
        args.output_details = False

    print(f"benchmark_args={args}")

    # Set global environments
    set_ulimit()
    random.seed(args.seed)
    np.random.seed(args.seed)

    extra_request_body = {}
    if args.extra_request_body:
        extra_request_body = json.loads(args.extra_request_body)

    # Set url
    if args.port is None:
        args.port = {
            "sglang": 30000,
            "sglang-native": 30000,
            "sglang-oai": 30000,
            "lmdeploy": 23333,
            "vllm": 8000,
            "trt": 8000,
            "gserver": 9988,
            "truss": 8080,
        }.get(args.backend, 30000)

    model_url = (
        f"{args.base_url}/v1/models"
        if args.base_url
        else f"http://{args.host}:{args.port}/v1/models"
    )

    if args.backend in ["sglang", "sglang-native"]:
        api_url = (
            f"{args.base_url}/generate"
            if args.base_url
            else f"http://{args.host}:{args.port}/generate"
        )
    elif args.backend in ["sglang-oai", "vllm", "lmdeploy"]:
        api_url = (
            f"{args.base_url}/v1/completions"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/completions"
        )
    elif args.backend == "trt":
        api_url = (
            f"{args.base_url}/v2/models/ensemble/generate_stream"
            if args.base_url
            else f"http://{args.host}:{args.port}/v2/models/ensemble/generate_stream"
        )
        if args.model is None:
            print("Please provide a model using `--model` when using `trt` backend.")
            sys.exit(1)
    elif args.backend == "gserver":
        api_url = args.base_url if args.base_url else f"{args.host}:{args.port}"
        args.model = args.model or "default"
    elif args.backend == "truss":
        api_url = (
            f"{args.base_url}/v1/models/model:predict"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/models/model:predict"
        )
    base_url = (
        f"http://{args.host}:{args.port}" if args.base_url is None else args.base_url
    )

    # Get model name
    if args.model is None:
        if args.backend == "truss":
            print(
                "Please provide a model with `--model` when using truss backend. e.g. --model meta-llama/Llama-3.1-8B-Instruct"
            )
            sys.exit(1)
        try:
            response = requests.get(model_url, headers=get_auth_headers())
            model_list = response.json().get("data", [])
            args.model = model_list[0]["id"] if model_list else None
        except Exception as e:
            print(f"Failed to fetch model from {model_url}. Error: {e}")
            print(
                "Please specify the correct host and port using `--host` and `--port`."
            )
            sys.exit(1)

    if args.model is None:
        print("No model specified or found. Please provide a model using `--model`.")
        sys.exit(1)

    if not check_chat_template(args.model):
        print(
            "\nWARNING It is recommended to use the `Chat` or `Instruct` model for benchmarking.\n"
            "Because when the tokenizer counts the output tokens, if there is gibberish, it might count incorrectly.\n"
        )

    print(f"{args}\n")

    # Read dataset
    backend = args.backend
    model_id = args.model
    tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
    tokenizer = get_tokenizer(tokenizer_id)
    input_requests = get_dataset(args, tokenizer)

    # compatible with SimpleNamespace
    if not hasattr(args, "flush_cache"):
        args.flush_cache = False

    return asyncio.run(
        benchmark(
            backend=backend,
            api_url=api_url,
            base_url=base_url,
            model_id=model_id,
            tokenizer=tokenizer,
            input_requests=input_requests,
            request_rate=args.request_rate,
            max_concurrency=args.max_concurrency,
            disable_tqdm=args.disable_tqdm,
            lora_names=args.lora_name,
            extra_request_body=extra_request_body,
            profile=args.profile,
            pd_separated=args.pd_separated,
            flush_cache=args.flush_cache,
        )
    )


def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
            print(f"Fail to set RLIMIT_NOFILE: {e}")


class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, [])
        for lora_name in values:
            getattr(namespace, self.dest).append(lora_name)


if __name__ == "__main__":
    parser = ArgumentParser(description="Benchmark the online serving throughput.")
    parser.add_argument(
        "--backend",
        type=str,
        choices=list(ASYNC_REQUEST_FUNCS.keys()),
        default="sglang",
        help="Must specify a backend, depending on the LLM Inference Engine.",
    )
    parser.add_argument(
        "--base-url",
        type=str,
        default=None,
        help="Server or API base url if not using http host and port.",
    )
    parser.add_argument(
        "--host", type=str, default="0.0.0.0", help="Default host is 0.0.0.0."
    )
    parser.add_argument(
        "--port",
        type=int,
        help="If not set, the default port is configured according to its default value for different LLM Inference Engines.",
    )
    parser.add_argument(
        "--dataset-name",
        type=str,
        default="sharegpt",
        choices=["sharegpt", "random", "random-ids", "generated-shared-prefix", "mmmu"],
        help="Name of the dataset to benchmark on.",
    )
    parser.add_argument(
        "--dataset-path", type=str, default="", help="Path to the dataset."
    )
    parser.add_argument(
        "--model",
        type=str,
        help="Name or path of the model. If not set, the default model will request /v1/models for conf.",
    )
    parser.add_argument(
        "--tokenizer",
        type=str,
        help="Name or path of the tokenizer. If not set, using the model conf.",
    )
    parser.add_argument(
        "--num-prompts",
        type=int,
        default=1000,
        help="Number of prompts to process. Default is 1000.",
    )
    parser.add_argument(
        "--sharegpt-output-len",
        type=int,
        default=None,
        help="Output length for each request. Overrides the output length from the ShareGPT dataset.",
    )
    parser.add_argument(
        "--sharegpt-context-len",
        type=int,
        default=None,
        help="The context length of the model for the ShareGPT dataset. Requests longer than the context length will be dropped.",
    )
    parser.add_argument(
        "--random-input-len",
        type=int,
        default=1024,
        help="Number of input tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-output-len",
        default=1024,
        type=int,
        help="Number of output tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-range-ratio",
        type=float,
        default=0.0,
        help="Range of sampled ratio of input/output length, "
        "used only for random dataset.",
    )
    parser.add_argument(
        "--request-rate",
        type=float,
        default=float("inf"),
        help="Number of requests per second. If this is inf, then all the requests are sent at time 0. "
        "Otherwise, we use Poisson process to synthesize the request arrival times. Default is inf.",
    )
    parser.add_argument(
        "--max-concurrency",
        type=int,
        default=None,
        help="Maximum number of concurrent requests. This can be used "
        "to help simulate an environment where a higher level component "
        "is enforcing a maximum number of concurrent requests. While the "
        "--request-rate argument controls the rate at which requests are "
        "initiated, this argument will control how many are actually allowed "
        "to execute at a time. This means that when used in combination, the "
        "actual request rate may be lower than specified with --request-rate, "
        "if the server is not processing requests fast enough to keep up.",
    )
    parser.add_argument("--output-file", type=str, help="Output JSONL file name.")
    parser.add_argument(
        "--output-details", action="store_true", help="Output details of benchmarking."
    )
    parser.add_argument(
        "--disable-tqdm",
        action="store_true",
        help="Specify to disable tqdm progress bar.",
    )
    parser.add_argument(
        "--disable-stream",
        action="store_true",
        help="Disable streaming mode.",
    )
    parser.add_argument(
        "--return-logprob",
        action="store_true",
        help="Return logprob.",
    )
    parser.add_argument("--seed", type=int, default=1, help="The random seed.")
    parser.add_argument(
        "--disable-ignore-eos",
        action="store_true",
        help="Disable ignoring EOS.",
    )
    parser.add_argument(
        "--extra-request-body",
        metavar='{"key1": "value1", "key2": "value2"}',
        type=str,
        help="Append given JSON object to the request payload. You can use this to specify"
        "additional generate params like sampling params.",
    )
    parser.add_argument(
        "--apply-chat-template",
        action="store_true",
        help="Apply chat template",
    )
    parser.add_argument(
        "--profile",
        action="store_true",
        help="Use Torch Profiler. The endpoint must be launched with "
        "SGLANG_TORCH_PROFILER_DIR to enable profiler.",
    )
    parser.add_argument(
        "--lora-name",
        type=str,
        nargs="*",
        default=None,
        action=LoRAPathAction,
        help="The names of LoRA adapters. You can provide a list of names in the format {name} {name} {name}...",
    )
    parser.add_argument(
        "--prompt-suffix",
        type=str,
        default="",
        help="Suffix applied to the end of all user prompts, followed by assistant prompt suffix.",
    )
    parser.add_argument(
        "--pd-separated",
        action="store_true",
        help="Benchmark PD disaggregation server",
    )
    parser.add_argument(
        "--flush-cache",
        action="store_true",
        help="Flush the cache before running the benchmark",
    )
    parser.add_argument(
        "--warmup-requests",
        type=int,
        default=1,
        help="Number of warmup requests to run before the benchmark",
    )

    group = parser.add_argument_group("generated-shared-prefix dataset arguments")
    group.add_argument(
        "--gsp-num-groups",
        type=int,
        default=64,
        help="Number of system prompt groups for generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gsp-prompts-per-group",
        type=int,
        default=16,
        help="Number of prompts per system prompt group for generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gsp-system-prompt-len",
        type=int,
        default=2048,
        help="Target length in tokens for system prompts in generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gsp-question-len",
        type=int,
        default=128,
        help="Target length in tokens for questions in generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gsp-output-len",
        type=int,
        default=256,
        help="Target length in tokens for outputs in generated-shared-prefix dataset",
    )
    args = parser.parse_args()
    run_benchmark(args)