bench_one_batch.py 18.9 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
"""
Benchmark the latency of running a single static batch without a server.

This script does not launch a server and uses the low-level APIs.
It accepts server arguments (the same as launch_server.py) and benchmark arguments (e.g., batch size, input lengths).

# Usage (latency test)
## with dummy weights:
python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --load-format dummy
## sweep through multiple data points and store (append) the results in a jsonl file:
python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 12 14 --input-len 256 512 --output-len 32 256 --run-name test_run
## run with profiling:
python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 12 14 --input-len 256 512 --profile
# Usage (correctness test):
python -m sglang.bench_one_batch --model-path TinyLlama/TinyLlama-1.1B-Chat-v0.4 --correct

## Reference output (of the correctness test above, can be gpu dependent):
input_ids=[[1, 450, 7483, 310, 3444, 338], [1, 450, 7483, 310, 278, 3303, 13187, 290, 338], [1, 20628, 338, 263, 6575, 1460, 2462, 322, 306, 763]]

prefill logits (first half): tensor([[-10.0312,  -9.5000,   0.8931,  ...,  -4.9414,  -3.2422,  -3.3633],
        [-10.0312,  -9.5000,   0.8931,  ...,  -4.9414,  -3.2422,  -3.3633],
        [ -9.1875, -10.2500,   2.7129,  ...,  -4.3359,  -4.0664,  -4.1328]],
       device='cuda:0')

prefill logits (final): tensor([[-8.3125, -7.1172,  3.3457,  ..., -4.9570, -4.1328, -3.4141],
        [-8.9141, -9.0156,  4.1445,  ..., -4.9922, -4.4961, -4.0781],
        [-9.6328, -9.0547,  4.0195,  ..., -5.3047, -4.7148, -4.4570]],
       device='cuda:0')

========== Prompt 0 ==========
<s> The capital of France is Paris.
The capital of the United States is Washington, D.C.


========== Prompt 1 ==========
<s> The capital of the United Kindom is London.
The capital of the United Kingdom is London.
The capital of the

========== Prompt 2 ==========
<s> Today is a sunny day and I like to go for a walk in the park.
I'm going to the park
"""

import argparse
import dataclasses
import itertools
import json
import logging
import multiprocessing
import os
import time
from typing import Tuple

import numpy as np
import torch
import torch.distributed as dist

from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.distributed.parallel_state import destroy_distributed_environment
from sglang.srt.entrypoints.engine import _set_envs_and_config
from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.managers.schedule_batch import Req, ScheduleBatch
from sglang.srt.managers.scheduler import Scheduler
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.sampling.sampling_params import SamplingParams
from sglang.srt.server_args import PortArgs, ServerArgs
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
from sglang.srt.utils import (
    configure_logger,
    get_bool_env_var,
    kill_process_tree,
    set_gpu_proc_affinity,
    suppress_other_loggers,
)


@dataclasses.dataclass
class BenchArgs:
    run_name: str = "default"
    batch_size: Tuple[int] = (1,)
    input_len: Tuple[int] = (1024,)
    output_len: Tuple[int] = (16,)
    result_filename: str = "result.jsonl"
    correctness_test: bool = False
    # This is only used for correctness test
    cut_len: int = 4
    log_decode_step: int = 0
    profile: bool = False
    profile_filename_prefix: str = "profile"

    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
        parser.add_argument("--run-name", type=str, default=BenchArgs.run_name)
        parser.add_argument(
            "--batch-size", type=int, nargs="+", default=BenchArgs.batch_size
        )
        parser.add_argument(
            "--input-len", type=int, nargs="+", default=BenchArgs.input_len
        )
        parser.add_argument(
            "--output-len", type=int, nargs="+", default=BenchArgs.output_len
        )
        parser.add_argument(
            "--result-filename", type=str, default=BenchArgs.result_filename
        )
        parser.add_argument("--correctness-test", action="store_true")
        parser.add_argument("--cut-len", type=int, default=BenchArgs.cut_len)
        parser.add_argument(
            "--log-decode-step",
            type=int,
            default=BenchArgs.log_decode_step,
            help="Log decode latency by step, default is set to zero to disable.",
        )
        parser.add_argument(
            "--profile", action="store_true", help="Use Torch Profiler."
        )
        parser.add_argument(
            "--profile-filename-prefix",
            type=str,
            default=BenchArgs.profile_filename_prefix,
            help="Prefix of the profiling file names. The full profiling result file(s) be "
            '"[profile_filename_prefix]_batch[batch_size]_input[input_len]_output[output_len].trace.json.gz"',
        )

    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
        # use the default value's type to cast the args into correct types.
        attrs = [(attr.name, type(attr.default)) for attr in dataclasses.fields(cls)]
        return cls(
            **{attr: attr_type(getattr(args, attr)) for attr, attr_type in attrs}
        )


def load_model(server_args, port_args, tp_rank):
    suppress_other_loggers()
    rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None

    model_config = ModelConfig.from_server_args(server_args)
    model_runner = ModelRunner(
        model_config=model_config,
        mem_fraction_static=server_args.mem_fraction_static,
        gpu_id=tp_rank,
        tp_rank=tp_rank,
        tp_size=server_args.tp_size,
        pp_rank=0,
        pp_size=1,
        nccl_port=port_args.nccl_port,
        server_args=server_args,
    )
    rank_print(f"max_total_num_tokens={model_runner.max_total_num_tokens}")
    tokenizer = get_tokenizer(
        server_args.tokenizer_path,
        tokenizer_mode=server_args.tokenizer_mode,
        trust_remote_code=server_args.trust_remote_code,
    )
    if server_args.tp_size > 1:
        dist.barrier()
    return model_runner, tokenizer


def prepare_inputs_for_correctness_test(bench_args, tokenizer):
    prompts = [
        "The capital of France is",
        "The capital of the United Kindom is",
        "Today is a sunny day and I like",
    ]
    input_ids = [tokenizer.encode(p) for p in prompts]
    sampling_params = SamplingParams(
        temperature=0,
        max_new_tokens=BenchArgs.output_len,
    )

    reqs = []
    for i in range(len(prompts)):
        assert len(input_ids[i]) > bench_args.cut_len

        tmp_input_ids = input_ids[i][: bench_args.cut_len]
        req = Req(
            rid=i,
            origin_input_text=prompts[i],
            origin_input_ids=tmp_input_ids,
            sampling_params=sampling_params,
        )
        req.prefix_indices = []
        req.fill_ids = req.origin_input_ids
        req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices)
        req.logprob_start_len = len(req.origin_input_ids) - 1
        reqs.append(req)

    return input_ids, reqs


def prepare_extend_inputs_for_correctness_test(
    bench_args, input_ids, reqs, model_runner
):
    for i in range(len(reqs)):
        req = reqs[i]
        req.fill_ids += input_ids[i][bench_args.cut_len :]
        req.prefix_indices = model_runner.req_to_token_pool.req_to_token[
            i, : bench_args.cut_len
        ]
        req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices)
        req.logprob_start_len = len(req.origin_input_ids) - 1
    return reqs


def prepare_synthetic_inputs_for_latency_test(batch_size, input_len):
    input_ids = np.random.randint(0, 10000, (batch_size, input_len), dtype=np.int32)
    sampling_params = SamplingParams(
        temperature=0,
        max_new_tokens=BenchArgs.output_len,
    )

    reqs = []
    for i in range(len(input_ids)):
        req = Req(
            rid=i,
            origin_input_text="",
            origin_input_ids=list(input_ids[i]),
            sampling_params=sampling_params,
        )
        req.prefix_indices = []
        req.fill_ids = req.origin_input_ids
        req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices)
        req.logprob_start_len = len(req.origin_input_ids) - 1
        reqs.append(req)

    return reqs


@torch.no_grad
def extend(reqs, model_runner):
    batch = ScheduleBatch.init_new(
        reqs=reqs,
        req_to_token_pool=model_runner.req_to_token_pool,
        token_to_kv_pool_allocator=model_runner.token_to_kv_pool_allocator,
        tree_cache=None,
        model_config=model_runner.model_config,
        enable_overlap=False,
        spec_algorithm=SpeculativeAlgorithm.NONE,
        enable_custom_logit_processor=False,
    )
    batch.prepare_for_extend()
    _maybe_prepare_dp_attn_batch(batch, model_runner)
    model_worker_batch = batch.get_model_worker_batch()
    forward_batch = ForwardBatch.init_new(model_worker_batch, model_runner)
    logits_output, _ = model_runner.forward(forward_batch)
    next_token_ids = model_runner.sample(logits_output, forward_batch)
    return next_token_ids, logits_output.next_token_logits, batch


@torch.no_grad
def decode(input_token_ids, batch, model_runner):
    batch.output_ids = input_token_ids
    batch.prepare_for_decode()
    _maybe_prepare_dp_attn_batch(batch, model_runner)
    model_worker_batch = batch.get_model_worker_batch()
    forward_batch = ForwardBatch.init_new(model_worker_batch, model_runner)
    logits_output, _ = model_runner.forward(forward_batch)
    next_token_ids = model_runner.sample(logits_output, forward_batch)
    return next_token_ids, logits_output.next_token_logits


def _maybe_prepare_dp_attn_batch(batch: ScheduleBatch, model_runner):
    if model_runner.server_args.enable_dp_attention:
        Scheduler.prepare_dp_attn_batch_raw(
            batch,
            dp_size=model_runner.server_args.dp_size,
            attn_tp_size=1,
            moe_dense_tp_size=model_runner.server_args.moe_dense_tp_size,
            tp_cpu_group=model_runner.tp_group.cpu_group,
            get_idle_batch=None,
            disable_cuda_graph=model_runner.server_args.disable_cuda_graph,
            spec_algorithm=SpeculativeAlgorithm.NONE,
            speculative_num_draft_tokens=None,
        )


def correctness_test(
    server_args,
    port_args,
    bench_args,
    tp_rank,
):
    # Configure the logger
    configure_logger(server_args, prefix=f" TP{tp_rank}")
    rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None

    # Load the model
    model_runner, tokenizer = load_model(server_args, port_args, tp_rank)

    # Prepare inputs
    input_ids, reqs = prepare_inputs_for_correctness_test(bench_args, tokenizer)
    rank_print(f"\n{input_ids=}\n")

    if bench_args.cut_len > 0:
        # Prefill
        next_token_ids, next_token_logits, batch = extend(reqs, model_runner)
        rank_print(f"prefill logits (first half): {next_token_logits} \n")

    # Prepare extend inputs
    reqs = prepare_extend_inputs_for_correctness_test(
        bench_args, input_ids, reqs, model_runner
    )

    # Extend (prefill w/ KV cache)
    next_token_ids, next_token_logits, batch = extend(reqs, model_runner)
    rank_print(f"prefill logits (final): {next_token_logits} \n")

    # Decode
    output_ids = [input_ids[i] + [next_token_ids[i]] for i in range(len(input_ids))]
    for _ in range(bench_args.output_len[0] - 1):
        next_token_ids, _ = decode(next_token_ids, batch, model_runner)
        next_token_ids_list = next_token_ids.tolist()
        for i in range(len(reqs)):
            output_ids[i].append(next_token_ids_list[i])

    # Print output texts
    for i in range(len(reqs)):
        rank_print(f"========== Prompt {i} ==========")
        rank_print(tokenizer.decode(output_ids[i]), "\n")


def synchronize(device):
    torch.get_device_module(device).synchronize()


def latency_test_run_once(
    run_name,
    model_runner,
    rank_print,
    reqs,
    batch_size,
    input_len,
    output_len,
    device,
    log_decode_step,
    profile,
    profile_filename_prefix,
):
    max_batch_size = model_runner.max_total_num_tokens // (input_len + output_len)
    if batch_size > max_batch_size:
        rank_print(
            f"skipping ({batch_size}, {input_len}, {output_len}) due to max batch size limit"
        )
        return

    # Clear the pools.
    model_runner.req_to_token_pool.clear()
    model_runner.token_to_kv_pool_allocator.clear()

    measurement_results = {
        "run_name": run_name,
        "batch_size": batch_size,
        "input_len": input_len,
        "output_len": output_len,
    }

    tot_latency = 0

    profiler = None
    if profile:
        profiler = torch.profiler.profile(
            activities=[
                torch.profiler.ProfilerActivity.CPU,
                torch.profiler.ProfilerActivity.CUDA,
            ],
            with_stack=True,
        )
        profiler.start()

    # Prefill
    synchronize(device)
    tic = time.perf_counter()
    next_token_ids, _, batch = extend(reqs, model_runner)
    synchronize(device)
    prefill_latency = time.perf_counter() - tic
    tot_latency += prefill_latency
    throughput = input_len * batch_size / prefill_latency
    rank_print(
        f"Prefill. latency: {prefill_latency:6.5f} s, throughput: {throughput:9.2f} token/s"
    )
    measurement_results["prefill_latency"] = prefill_latency
    measurement_results["prefill_throughput"] = throughput

    # Decode
    decode_latencies = []
    for i in range(output_len - 1):
        synchronize(device)
        tic = time.perf_counter()
        next_token_ids, _ = decode(next_token_ids, batch, model_runner)
        synchronize(device)
        latency = time.perf_counter() - tic
        tot_latency += latency
        throughput = batch_size / latency
        decode_latencies.append(latency)
        if i < 5 or (log_decode_step > 0 and i % log_decode_step == 0):
            rank_print(
                f"Decode {i}. Batch size: {batch_size}, latency: {latency:6.5f} s, throughput: {throughput:9.2f} token/s"
            )

    if profile:
        profiler.stop()
        profile_filename = f"{profile_filename_prefix}_batch{batch_size}_input{input_len}_output{output_len}.trace.json.gz"
        parent_dir = os.path.dirname(os.path.abspath(profile_filename))
        os.makedirs(parent_dir, exist_ok=True)
        profiler.export_chrome_trace(profile_filename)
        rank_print(f"torch profiler chrome trace saved to {profile_filename}")

    # Record decode timing from 2nd output
    if output_len > 1:
        med_decode_latency = np.median(decode_latencies)
        med_decode_throughput = batch_size / med_decode_latency
        rank_print(
            f"Decode.  median latency: {med_decode_latency:6.5f} s, median throughput: {med_decode_throughput:9.2f} token/s"
        )
        measurement_results["median_decode_latency"] = med_decode_latency
        measurement_results["median_decode_throughput"] = med_decode_throughput

    throughput = (input_len + output_len) * batch_size / tot_latency
    rank_print(
        f"Total. latency: {tot_latency:6.3f} s, throughput: {throughput:9.2f} token/s"
    )
    measurement_results["total_latency"] = tot_latency
    measurement_results["overall_throughput"] = throughput
    return measurement_results


def latency_test(
    server_args,
    port_args,
    bench_args,
    tp_rank,
):
    # Set CPU affinity
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, tp_rank)

    # Configure the logger
    configure_logger(server_args, prefix=f" TP{tp_rank}")
    rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None

    # Load the model
    model_runner, tokenizer = load_model(server_args, port_args, tp_rank)

    # Prepare inputs for warm up
    reqs = prepare_synthetic_inputs_for_latency_test(
        bench_args.batch_size[0], bench_args.input_len[0]
    )

    # Warm up
    rank_print("Warmup ...")
    latency_test_run_once(
        bench_args.run_name,
        model_runner,
        rank_print,
        reqs,
        bench_args.batch_size[0],
        bench_args.input_len[0],
        min(32, bench_args.output_len[0]),  # shorter decoding to speed up the warmup
        server_args.device,
        log_decode_step=0,
        profile=False,
        profile_filename_prefix="",  # not used
    )

    rank_print("Benchmark ...")

    # Run the sweep
    result_list = []
    for bs, il, ol in itertools.product(
        bench_args.batch_size, bench_args.input_len, bench_args.output_len
    ):
        reqs = prepare_synthetic_inputs_for_latency_test(bs, il)
        ret = latency_test_run_once(
            bench_args.run_name,
            model_runner,
            rank_print,
            reqs,
            bs,
            il,
            ol,
            server_args.device,
            bench_args.log_decode_step,
            bench_args.profile if tp_rank == 0 else None,
            bench_args.profile_filename_prefix,
        )
        if ret is not None:
            result_list.append(ret)

    # Write results in jsonlines format on rank 0.
    if tp_rank == 0 and bench_args.result_filename:
        with open(bench_args.result_filename, "a") as fout:
            for result in result_list:
                fout.write(json.dumps(result) + "\n")

    if server_args.tp_size > 1:
        destroy_distributed_environment()


def main(server_args, bench_args):
    server_args.cuda_graph_max_bs = max(bench_args.batch_size)

    _set_envs_and_config(server_args)

    if server_args.model_path:
        if bench_args.correctness_test:
            work_func = correctness_test
        else:
            work_func = latency_test
    else:
        raise ValueError(
            "Provide --model-path for running the tests or "
            "provide --result-filename for plotting the results"
        )

    port_args = PortArgs.init_new(server_args)

    if server_args.tp_size == 1:
        work_func(server_args, port_args, bench_args, 0)
    else:
        workers = []
        for tp_rank in range(server_args.tp_size):
            proc = multiprocessing.Process(
                target=work_func,
                args=(
                    server_args,
                    port_args,
                    bench_args,
                    tp_rank,
                ),
            )
            proc.start()
            workers.append(proc)

        for proc in workers:
            proc.join()

        proc.terminate()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
    BenchArgs.add_cli_args(parser)
    args = parser.parse_args()
    server_args = ServerArgs.from_cli_args(args)
    bench_args = BenchArgs.from_cli_args(args)

    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format="%(message)s",
    )

    try:
        main(server_args, bench_args)
    finally:
        if server_args.tp_size != 1:
            kill_process_tree(os.getpid(), include_parent=False)