install.md 7.79 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Install SGLang

You can install SGLang using any of the methods below.

For running DeepSeek V3/R1, refer to [DeepSeek V3 Support](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3). It is recommended to use the latest version and deploy it with [Docker](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#using-docker-recommended) to avoid environment-related issues.

It is recommended to use uv to install the dependencies for faster installation:

## Method 1: With pip or uv

```bash
pip install --upgrade pip
pip install uv
uv pip install "sglang[all]>=0.4.6.post5"
```

**Quick Fixes to Common Problems**

- SGLang currently uses torch 2.6, so you need to install flashinfer for torch 2.6. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html). Please note that the FlashInfer pypi package is called `flashinfer-python` instead of `flashinfer`.

- If you encounter `OSError: CUDA_HOME environment variable is not set`. Please set it to your CUDA install root with either of the following solutions:

  1. Use `export CUDA_HOME=/usr/local/cuda-<your-cuda-version>` to set the `CUDA_HOME` environment variable.
  2. Install FlashInfer first following [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html), then install SGLang as described above.

- If you encounter `ImportError; cannot import name 'is_valid_list_of_images' from 'transformers.models.llama.image_processing_llama'`, try to use the specified version of `transformers` in [pyproject.toml](https://github.com/sgl-project/sglang/blob/main/python/pyproject.toml). Currently, just running `pip install transformers==4.51.1`.

## Method 2: From source

```bash
# Use the last release branch
git clone -b v0.4.6.post5 https://github.com/sgl-project/sglang.git
cd sglang

pip install --upgrade pip
pip install -e "python[all]"
```

Note: SGLang currently uses torch 2.6, so you need to install flashinfer for torch 2.6. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html).

If you want to develop SGLang, it is recommended to use docker. Please refer to [setup docker container](https://github.com/sgl-project/sglang/blob/main/docs/developer/development_guide_using_docker.md#setup-docker-container) for guidance. The docker image is `lmsysorg/sglang:dev`.

Note: For AMD ROCm system with Instinct/MI GPUs, do following instead:

```bash
# Use the last release branch
git clone -b v0.4.6.post5 https://github.com/sgl-project/sglang.git
cd sglang

pip install --upgrade pip
cd sgl-kernel
python setup_rocm.py install
cd ..
pip install -e "python[all_hip]"
```

## Method 3: Using docker

The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).

```bash
docker run --gpus all \
    --shm-size 32g \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HF_TOKEN=<secret>" \
    --ipc=host \
    lmsysorg/sglang:latest \
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
```

Note: For AMD ROCm system with Instinct/MI GPUs, it is recommended to use `docker/Dockerfile.rocm` to build images, example and usage as below:

```bash
docker build --build-arg SGL_BRANCH=v0.4.6.post5 -t v0.4.6.post5-rocm630 -f Dockerfile.rocm .

alias drun='docker run -it --rm --network=host --device=/dev/kfd --device=/dev/dri --ipc=host \
    --shm-size 16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
    -v $HOME/dockerx:/dockerx -v /data:/data'

drun -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HF_TOKEN=<secret>" \
    v0.4.6.post5-rocm630 \
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000

# Till flashinfer backend available, --attention-backend triton --sampling-backend pytorch are set by default
drun v0.4.6.post5-rocm630 python3 -m sglang.bench_one_batch --batch-size 32 --input 1024 --output 128 --model amd/Meta-Llama-3.1-8B-Instruct-FP8-KV --tp 8 --quantization fp8
```

## Method 4: Using docker compose

<details>
<summary>More</summary>

> This method is recommended if you plan to serve it as a service.
> A better approach is to use the [k8s-sglang-service.yaml](https://github.com/sgl-project/sglang/blob/main/docker/k8s-sglang-service.yaml).

1. Copy the [compose.yml](https://github.com/sgl-project/sglang/blob/main/docker/compose.yaml) to your local machine
2. Execute the command `docker compose up -d` in your terminal.
</details>

## Method 5: Using Kubernetes

<details>
<summary>More</summary>

1. Option 1: For single node serving (typically when the model size fits into GPUs on one node)

   Execute command `kubectl apply -f docker/k8s-sglang-service.yaml`, to create k8s deployment and service, with llama-31-8b as example.

2. Option 2: For multi-node serving (usually when a large model requires more than one GPU node, such as `DeepSeek-R1`)

   Modify the LLM model path and arguments as necessary, then execute command `kubectl apply -f docker/k8s-sglang-distributed-sts.yaml`, to create two nodes k8s statefulset and serving service.

</details>

## Method 6: Run on Kubernetes or Clouds with SkyPilot

<details>
<summary>More</summary>

To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).

1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
2. Deploy on your own infra with a single command and get the HTTP API endpoint:
<details>
<summary>SkyPilot YAML: <code>sglang.yaml</code></summary>

```yaml
# sglang.yaml
envs:
  HF_TOKEN: null

resources:
  image_id: docker:lmsysorg/sglang:latest
  accelerators: A100
  ports: 30000

run: |
  conda deactivate
  python3 -m sglang.launch_server \
    --model-path meta-llama/Llama-3.1-8B-Instruct \
    --host 0.0.0.0 \
    --port 30000
```

</details>

```bash
# Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml

# Get the HTTP API endpoint
sky status --endpoint 30000 sglang
```

3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
</details>

## Common Notes

- [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is the default attention kernel backend. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), please switch to other kernels by adding `--attention-backend triton --sampling-backend pytorch` and open an issue on GitHub.
- If you only need to use OpenAI models with the frontend language, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
- The language frontend operates independently of the backend runtime. You can install the frontend locally without needing a GPU, while the backend can be set up on a GPU-enabled machine. To install the frontend, run `pip install sglang`, and for the backend, use `pip install sglang[srt]`. `srt` is the abbreviation of SGLang runtime.
- To reinstall flashinfer locally, use the following command: `pip install "flashinfer-python==0.2.5" -i https://flashinfer.ai/whl/cu124/torch2.6 --force-reinstall --no-deps` and then delete the cache with `rm -rf ~/.cache/flashinfer`.