"pretrain_gpt2_old.py" did not exist on "deffcb6a41c1017ff09a6d4c4d3b8817dae386fd"
model_utils.py 12.7 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import time
import gc
from PIL import Image
from loguru import logger
import numpy as np

from mineru.utils.boxbase import get_minbox_if_overlap_by_ratio

try:
    import torch
    import torch_npu
except ImportError:
    pass


def crop_img(input_res, input_img, crop_paste_x=0, crop_paste_y=0):

    crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
    crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])

    # Calculate new dimensions
    crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
    crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2

    if isinstance(input_img, np.ndarray):

        # Create a white background array
        return_image = np.ones((crop_new_height, crop_new_width, 3), dtype=np.uint8) * 255

        # Crop the original image using numpy slicing
        cropped_img = input_img[crop_ymin:crop_ymax, crop_xmin:crop_xmax]

        # Paste the cropped image onto the white background
        return_image[crop_paste_y:crop_paste_y + (crop_ymax - crop_ymin),
        crop_paste_x:crop_paste_x + (crop_xmax - crop_xmin)] = cropped_img
    else:
        # Create a white background array
        return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')
        # Crop image
        crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
        cropped_img = input_img.crop(crop_box)
        return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))

    return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width,
                   crop_new_height]
    return return_image, return_list


def get_coords_and_area(block_with_poly):
    """Extract coordinates and area from a table."""
    xmin, ymin = int(block_with_poly['poly'][0]), int(block_with_poly['poly'][1])
    xmax, ymax = int(block_with_poly['poly'][4]), int(block_with_poly['poly'][5])
    area = (xmax - xmin) * (ymax - ymin)
    return xmin, ymin, xmax, ymax, area


def calculate_intersection(box1, box2):
    """Calculate intersection coordinates between two boxes."""
    intersection_xmin = max(box1[0], box2[0])
    intersection_ymin = max(box1[1], box2[1])
    intersection_xmax = min(box1[2], box2[2])
    intersection_ymax = min(box1[3], box2[3])

    # Check if intersection is valid
    if intersection_xmax <= intersection_xmin or intersection_ymax <= intersection_ymin:
        return None

    return intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax


def calculate_iou(box1, box2):
    """Calculate IoU between two boxes."""
    intersection = calculate_intersection(box1[:4], box2[:4])

    if not intersection:
        return 0

    intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax = intersection
    intersection_area = (intersection_xmax - intersection_xmin) * (intersection_ymax - intersection_ymin)

    area1, area2 = box1[4], box2[4]
    union_area = area1 + area2 - intersection_area

    return intersection_area / union_area if union_area > 0 else 0


def is_inside(small_box, big_box, overlap_threshold=0.8):
    """Check if small_box is inside big_box by at least overlap_threshold."""
    intersection = calculate_intersection(small_box[:4], big_box[:4])

    if not intersection:
        return False

    intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax = intersection
    intersection_area = (intersection_xmax - intersection_xmin) * (intersection_ymax - intersection_ymin)

    # Check if overlap exceeds threshold
    return intersection_area >= overlap_threshold * small_box[4]


def do_overlap(box1, box2):
    """Check if two boxes overlap."""
    return calculate_intersection(box1[:4], box2[:4]) is not None


def merge_high_iou_tables(table_res_list, layout_res, table_indices, iou_threshold=0.7):
    """Merge tables with IoU > threshold."""
    if len(table_res_list) < 2:
        return table_res_list, table_indices

    table_info = [get_coords_and_area(table) for table in table_res_list]
    merged = True

    while merged:
        merged = False
        i = 0
        while i < len(table_res_list) - 1:
            j = i + 1
            while j < len(table_res_list):
                iou = calculate_iou(table_info[i], table_info[j])

                if iou > iou_threshold:
                    # Merge tables by taking their union
                    x1_min, y1_min, x1_max, y1_max, _ = table_info[i]
                    x2_min, y2_min, x2_max, y2_max, _ = table_info[j]

                    union_xmin = min(x1_min, x2_min)
                    union_ymin = min(y1_min, y2_min)
                    union_xmax = max(x1_max, x2_max)
                    union_ymax = max(y1_max, y2_max)

                    # Create merged table
                    merged_table = table_res_list[i].copy()
                    merged_table['poly'][0] = union_xmin
                    merged_table['poly'][1] = union_ymin
                    merged_table['poly'][2] = union_xmax
                    merged_table['poly'][3] = union_ymin
                    merged_table['poly'][4] = union_xmax
                    merged_table['poly'][5] = union_ymax
                    merged_table['poly'][6] = union_xmin
                    merged_table['poly'][7] = union_ymax

                    # Update layout_res
                    to_remove = [table_indices[j], table_indices[i]]
                    for idx in sorted(to_remove, reverse=True):
                        del layout_res[idx]
                    layout_res.append(merged_table)

                    # Update tracking lists
                    table_indices = [k if k < min(to_remove) else
                                     k - 1 if k < max(to_remove) else
                                     k - 2 if k > max(to_remove) else
                                     len(layout_res) - 1
                                     for k in table_indices
                                     if k not in to_remove]
                    table_indices.append(len(layout_res) - 1)

                    # Update table lists
                    table_res_list.pop(j)
                    table_res_list.pop(i)
                    table_res_list.append(merged_table)

                    # Update table_info
                    table_info = [get_coords_and_area(table) for table in table_res_list]

                    merged = True
                    break
                j += 1

            if merged:
                break
            i += 1

    return table_res_list, table_indices


def filter_nested_tables(table_res_list, overlap_threshold=0.8, area_threshold=0.8):
    """Remove big tables containing multiple smaller tables within them."""
    if len(table_res_list) < 3:
        return table_res_list

    table_info = [get_coords_and_area(table) for table in table_res_list]
    big_tables_idx = []

    for i in range(len(table_res_list)):
        # Find tables inside this one
        tables_inside = [j for j in range(len(table_res_list))
                         if i != j and is_inside(table_info[j], table_info[i], overlap_threshold)]

        # Continue if there are at least 3 tables inside
        if len(tables_inside) >= 3:
            # Check if inside tables overlap with each other
            tables_overlap = any(do_overlap(table_info[tables_inside[idx1]], table_info[tables_inside[idx2]])
                                 for idx1 in range(len(tables_inside))
                                 for idx2 in range(idx1 + 1, len(tables_inside)))

            # If no overlaps, check area condition
            if not tables_overlap:
                total_inside_area = sum(table_info[j][4] for j in tables_inside)
                big_table_area = table_info[i][4]

                if total_inside_area > area_threshold * big_table_area:
                    big_tables_idx.append(i)

    return [table for i, table in enumerate(table_res_list) if i not in big_tables_idx]


def remove_overlaps_min_blocks(res_list):
    #  重叠block,小的不能直接删除,需要和大的那个合并成一个更大的。
    #  删除重叠blocks中较小的那些
    need_remove = []
    for res1 in res_list:
        for res2 in res_list:
            if res1 != res2:
                overlap_box = get_minbox_if_overlap_by_ratio(
                    res1['bbox'], res2['bbox'], 0.8
                )
                if overlap_box is not None:
                    res_to_remove = next(
                        (res for res in res_list if res['bbox'] == overlap_box),
                        None,
                    )
                    if (
                        res_to_remove is not None
                        and res_to_remove not in need_remove
                    ):
                        large_res = res1 if res1 != res_to_remove else res2
                        x1, y1, x2, y2 = large_res['bbox']
                        sx1, sy1, sx2, sy2 = res_to_remove['bbox']
                        x1 = min(x1, sx1)
                        y1 = min(y1, sy1)
                        x2 = max(x2, sx2)
                        y2 = max(y2, sy2)
                        large_res['bbox'] = [x1, y1, x2, y2]
                        need_remove.append(res_to_remove)

    if len(need_remove) > 0:
        for res in need_remove:
            res_list.remove(res)

    return res_list, need_remove


def get_res_list_from_layout_res(layout_res, iou_threshold=0.7, overlap_threshold=0.8, area_threshold=0.8):
    """Extract OCR, table and other regions from layout results."""
    ocr_res_list = []
    text_res_list = []
    table_res_list = []
    table_indices = []
    single_page_mfdetrec_res = []

    # Categorize regions
    for i, res in enumerate(layout_res):
        category_id = int(res['category_id'])

        if category_id in [13, 14]:  # Formula regions
            single_page_mfdetrec_res.append({
                "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                         int(res['poly'][4]), int(res['poly'][5])],
            })
        elif category_id in [0, 2, 4, 6, 7, 3]:  # OCR regions
            ocr_res_list.append(res)
        elif category_id == 5:  # Table regions
            table_res_list.append(res)
            table_indices.append(i)
        elif category_id in [1]:  # Text regions
            res['bbox'] = [int(res['poly'][0]), int(res['poly'][1]), int(res['poly'][4]), int(res['poly'][5])]
            text_res_list.append(res)

    # Process tables: merge high IoU tables first, then filter nested tables
    table_res_list, table_indices = merge_high_iou_tables(
        table_res_list, layout_res, table_indices, iou_threshold)

    filtered_table_res_list = filter_nested_tables(
        table_res_list, overlap_threshold, area_threshold)

    # Remove filtered out tables from layout_res
    if len(filtered_table_res_list) < len(table_res_list):
        kept_tables = set(id(table) for table in filtered_table_res_list)
        to_remove = [table_indices[i] for i, table in enumerate(table_res_list)
                     if id(table) not in kept_tables]

        for idx in sorted(to_remove, reverse=True):
            del layout_res[idx]

    # Remove overlaps in OCR and text regions
    text_res_list, need_remove = remove_overlaps_min_blocks(text_res_list)
    for res in text_res_list:
        # 将res的poly使用bbox重构
        res['poly'] = [res['bbox'][0], res['bbox'][1], res['bbox'][2], res['bbox'][1],
                       res['bbox'][2], res['bbox'][3], res['bbox'][0], res['bbox'][3]]
        # 删除res的bbox
        del res['bbox']

    ocr_res_list.extend(text_res_list)

    if len(need_remove) > 0:
        for res in need_remove:
            del res['bbox']
            layout_res.remove(res)

    return ocr_res_list, filtered_table_res_list, single_page_mfdetrec_res


def clean_memory(device='cuda'):
    if device == 'cuda':
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
    elif str(device).startswith("npu"):
        if torch_npu.npu.is_available():
            torch_npu.npu.empty_cache()
    elif str(device).startswith("mps"):
        torch.mps.empty_cache()
    gc.collect()


def clean_vram(device, vram_threshold=8):
    total_memory = get_vram(device)
    if total_memory and total_memory <= vram_threshold:
        gc_start = time.time()
        clean_memory(device)
        gc_time = round(time.time() - gc_start, 2)
        logger.info(f"gc time: {gc_time}")


def get_vram(device):
    if torch.cuda.is_available() and str(device).startswith("cuda"):
        total_memory = torch.cuda.get_device_properties(device).total_memory / (1024 ** 3)  # 将字节转换为 GB
        return total_memory
    elif str(device).startswith("npu"):
        if torch_npu.npu.is_available():
            total_memory = torch_npu.npu.get_device_properties(device).total_memory / (1024 ** 3)  # 转为 GB
            return total_memory
    else:
        return None