common.py 8.8 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) Opendatalab. All rights reserved.
import io
import json
import os
import copy
from pathlib import Path

import pypdfium2 as pdfium
from loguru import logger

from mineru.data.data_reader_writer import FileBasedDataWriter
from mineru.utils.draw_bbox import draw_layout_bbox, draw_span_bbox
from mineru.utils.enum_class import MakeMode
from mineru.utils.pdf_image_tools import images_bytes_to_pdf_bytes
from mineru.backend.vlm.vlm_middle_json_mkcontent import union_make as vlm_union_make
from mineru.backend.vlm.vlm_analyze import doc_analyze as vlm_doc_analyze

pdf_suffixes = [".pdf"]
image_suffixes = [".png", ".jpeg", ".jpg"]


def read_fn(path):
    if not isinstance(path, Path):
        path = Path(path)
    with open(str(path), "rb") as input_file:
        file_bytes = input_file.read()
        if path.suffix in image_suffixes:
            return images_bytes_to_pdf_bytes(file_bytes)
        elif path.suffix in pdf_suffixes:
            return file_bytes
        else:
            raise Exception(f"Unknown file suffix: {path.suffix}")


def prepare_env(output_dir, pdf_file_name, parse_method):
    local_md_dir = str(os.path.join(output_dir, pdf_file_name, parse_method))
    local_image_dir = os.path.join(str(local_md_dir), "images")
    os.makedirs(local_image_dir, exist_ok=True)
    os.makedirs(local_md_dir, exist_ok=True)
    return local_image_dir, local_md_dir


def convert_pdf_bytes_to_bytes_by_pypdfium2(pdf_bytes, start_page_id=0, end_page_id=None):

    # 从字节数据加载PDF
    pdf = pdfium.PdfDocument(pdf_bytes)

    # 确定结束页
    end_page_id = end_page_id if end_page_id is not None and end_page_id >= 0 else len(pdf) - 1
    if end_page_id > len(pdf) - 1:
        logger.warning("end_page_id is out of range, use pdf_docs length")
        end_page_id = len(pdf) - 1

    # 创建一个新的PDF文档
    output_pdf = pdfium.PdfDocument.new()

    # 选择要导入的页面索引
    page_indices = list(range(start_page_id, end_page_id + 1))

    # 从原PDF导入页面到新PDF
    output_pdf.import_pages(pdf, page_indices)

    # 将新PDF保存到内存缓冲区
    output_buffer = io.BytesIO()
    output_pdf.save(output_buffer)

    # 获取字节数据
    output_bytes = output_buffer.getvalue()

    pdf.close()  # 关闭原PDF文档以释放资源
    output_pdf.close()  # 关闭新PDF文档以释放资源

    return output_bytes


def do_parse(
    output_dir,
    pdf_file_names: list[str],
    pdf_bytes_list: list[bytes],
    p_lang_list: list[str],
    backend="pipeline",
    parse_method="auto",
    p_formula_enable=True,
    p_table_enable=True,
    server_url=None,
    f_draw_layout_bbox=True,
    f_draw_span_bbox=True,
    f_dump_md=True,
    f_dump_middle_json=True,
    f_dump_model_output=True,
    f_dump_orig_pdf=True,
    f_dump_content_list=True,
    f_make_md_mode=MakeMode.MM_MD,
    start_page_id=0,
    end_page_id=None,
):

    if backend == "pipeline":

        from mineru.backend.pipeline.pipeline_middle_json_mkcontent import union_make as pipeline_union_make
        from mineru.backend.pipeline.model_json_to_middle_json import result_to_middle_json as pipeline_result_to_middle_json
        from mineru.backend.pipeline.pipeline_analyze import doc_analyze as pipeline_doc_analyze

        for idx, pdf_bytes in enumerate(pdf_bytes_list):
            new_pdf_bytes = convert_pdf_bytes_to_bytes_by_pypdfium2(pdf_bytes, start_page_id, end_page_id)
            pdf_bytes_list[idx] = new_pdf_bytes

        infer_results, all_image_lists, all_pdf_docs, lang_list, ocr_enabled_list = pipeline_doc_analyze(pdf_bytes_list, p_lang_list, parse_method=parse_method, formula_enable=p_formula_enable,table_enable=p_table_enable)

        for idx, model_list in enumerate(infer_results):
            model_json = copy.deepcopy(model_list)
            pdf_file_name = pdf_file_names[idx]
            local_image_dir, local_md_dir = prepare_env(output_dir, pdf_file_name, parse_method)
            image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(local_md_dir)

            images_list = all_image_lists[idx]
            pdf_doc = all_pdf_docs[idx]
            _lang = lang_list[idx]
            _ocr_enable = ocr_enabled_list[idx]

            middle_json = pipeline_result_to_middle_json(model_list, images_list, pdf_doc, image_writer, _lang, _ocr_enable, p_formula_enable)

            pdf_info = middle_json["pdf_info"]

            pdf_bytes = pdf_bytes_list[idx]
            if f_draw_layout_bbox:
                draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_layout.pdf")

            if f_draw_span_bbox:
                draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_span.pdf")

            if f_dump_orig_pdf:
                md_writer.write(
                    f"{pdf_file_name}_origin.pdf",
                    pdf_bytes,
                )

            if f_dump_md:
                image_dir = str(os.path.basename(local_image_dir))
                md_content_str = pipeline_union_make(pdf_info, f_make_md_mode, image_dir)
                md_writer.write_string(
                    f"{pdf_file_name}.md",
                    md_content_str,
                )

            if f_dump_content_list:
                image_dir = str(os.path.basename(local_image_dir))
                content_list = pipeline_union_make(pdf_info, MakeMode.CONTENT_LIST, image_dir)
                md_writer.write_string(
                    f"{pdf_file_name}_content_list.json",
                    json.dumps(content_list, ensure_ascii=False, indent=4),
                )

            if f_dump_middle_json:
                md_writer.write_string(
                    f"{pdf_file_name}_middle.json",
                    json.dumps(middle_json, ensure_ascii=False, indent=4),
                )

            if f_dump_model_output:
                md_writer.write_string(
                    f"{pdf_file_name}_model.json",
                    json.dumps(model_json, ensure_ascii=False, indent=4),
                )

            logger.info(f"local output dir is {local_md_dir}")
    else:

        if backend.startswith("vlm-"):
            backend = backend[4:]

        f_draw_span_bbox = False
        parse_method = "vlm"
        for idx, pdf_bytes in enumerate(pdf_bytes_list):
            pdf_file_name = pdf_file_names[idx]
            pdf_bytes = convert_pdf_bytes_to_bytes_by_pypdfium2(pdf_bytes, start_page_id, end_page_id)
            local_image_dir, local_md_dir = prepare_env(output_dir, pdf_file_name, parse_method)
            image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(local_md_dir)
            middle_json, infer_result = vlm_doc_analyze(pdf_bytes, image_writer=image_writer, backend=backend, server_url=server_url)

            pdf_info = middle_json["pdf_info"]

            if f_draw_layout_bbox:
                draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_layout.pdf")

            if f_draw_span_bbox:
                draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_span.pdf")

            if f_dump_orig_pdf:
                md_writer.write(
                    f"{pdf_file_name}_origin.pdf",
                    pdf_bytes,
                )

            if f_dump_md:
                image_dir = str(os.path.basename(local_image_dir))
                md_content_str = vlm_union_make(pdf_info, f_make_md_mode, image_dir)
                md_writer.write_string(
                    f"{pdf_file_name}.md",
                    md_content_str,
                )

            if f_dump_content_list:
                image_dir = str(os.path.basename(local_image_dir))
                content_list = vlm_union_make(pdf_info, MakeMode.CONTENT_LIST, image_dir)
                md_writer.write_string(
                    f"{pdf_file_name}_content_list.json",
                    json.dumps(content_list, ensure_ascii=False, indent=4),
                )

            if f_dump_middle_json:
                md_writer.write_string(
                    f"{pdf_file_name}_middle.json",
                    json.dumps(middle_json, ensure_ascii=False, indent=4),
                )

            if f_dump_model_output:
                model_output = ("\n" + "-" * 50 + "\n").join(infer_result)
                md_writer.write_string(
                    f"{pdf_file_name}_model_output.txt",
                    model_output,
                )

            logger.info(f"local output dir is {local_md_dir}")



if __name__ == "__main__":
    # pdf_path = "../../demo/pdfs/demo3.pdf"
    pdf_path = "C:/Users/zhaoxiaomeng/Downloads/4546d0e2-ba60-40a5-a17e-b68555cec741.pdf"

    try:
       do_parse("./output", [Path(pdf_path).stem], [read_fn(Path(pdf_path))],["ch"],
                end_page_id=10,
                backend='vlm-huggingface'
                # backend = 'pipeline'
                )
    except Exception as e:
        logger.exception(e)