train_utils.py 12.3 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import os
import datetime
import random

import numpy as np
import cv2
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import MultiStepLR
from torch.nn.parallel import DistributedDataParallel as DDP
from torch import distributed as dist

from modules.generator import Generator
from modules.model import (
    GeneratorFullModel,
    DiscriminatorFullModel
)


def adjust_lr(optim, epoch, args):

    decay_times = len([x for x in args["lr_milestones"] if x - 1 < epoch])
    adj_lr = args["lr"] * ((1 / 10) ** decay_times)
    for pg in optim.param_groups:
        pg["lr"] = adj_lr
        print("learning rate is {}".format(adj_lr))

    return adj_lr


def make_weights(train_data_list, weight_lst=None):

    weights = []
    for i, train_data in enumerate(train_data_list):

        count = len(train_data)
        for j in range(count):
            if weight_lst is not None:
                weights.append(1 / count * weight_lst[i])
            else:
                weights.append(1 / count)

    return weights


def frozen_layers(model, key_list=None):

    for name, param in model.named_parameters():

        if key_list is None:
            param.requires_grad = False
            print("FIX : {}".format(name))
        else:
            for k in key_list:
                if k in name:
                    param.requires_grad = False
                    print("FIX : {}".format(name))
                    break

    return model


def set_random_seed(seed):

    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.deterministic = False


def save_ckpt(out_path, epoch, models, total_iters=None):

    ckpt = {k: v.state_dict() for k, v in models.items()}
    ckpt["epoch"] = epoch

    if out_path.lower().endswith((".pth", ".pth.tar")):
        save_path = out_path

    else:
        if not os.path.isdir(out_path):
            os.makedirs(out_path)

        time = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
        if total_iters is not None:
            save_path = os.path.join(out_path, "ckpt_{}_{}.pth.tar".format(epoch, total_iters))
        else:
            save_path = os.path.join(out_path, "ckpt_{}_{}.pth.tar".format(epoch, time))

    torch.save(ckpt, save_path)

    return save_path


def load_ckpt(ckpt_path, models, device=None, strict=True, warp_ckpt=False):
    ckpt = torch.load(ckpt_path, map_location=device)
    epoch = ckpt["epoch"] if "epoch" in ckpt else 0

    for key in models:
        if key in ckpt:
            print("load {} in checkpoint".format(key))
            if not (isinstance(models[key], torch.optim.Adam)):
                if warp_ckpt:
                    pretrained_dict = {k: v for k, v in ckpt[key].items() if 'ladder_network' in k or 'dense_motion_network' in k}
                    model_dict = models[key].state_dict()
                    model_dict.update(pretrained_dict)
                    models[key].load_state_dict(model_dict)
                else:
                    msg = models[key].load_state_dict(ckpt[key], strict=strict)
                    print(msg)
            else:
                models[key].load_state_dict(ckpt[key])

    return epoch


def frame_cropping(frame, bbox=None, expand_ratio=1.0, offset_x=0, offset_y=0):

    img_h = frame.shape[0]
    img_w = frame.shape[1]
    min_img_sz = min(img_w, img_h)
    if bbox is None:
        bbox = [0, 0, 1, 1]
    bbox_w = max(bbox[2] * img_w, bbox[3] * img_h)
    center = [
        int((bbox[0] + bbox[2] * 0.5 + bbox[2] * offset_x) * img_w),
        int((bbox[1] + bbox[3] * 0.5 - bbox[3] * offset_y) * img_h),
    ]

    crop_sz = min(min_img_sz, int(bbox_w * expand_ratio))
    half_sz = int(crop_sz * 0.5)

    if center[0] + half_sz > img_w:
        center[0] = img_w - half_sz
    if center[0] - half_sz < 0:
        center[0] = half_sz
    if center[1] + half_sz > img_h:
        center[1] = img_h - half_sz
    if center[1] - half_sz < 0:
        center[1] = half_sz

    frame_crop = frame[center[1] - half_sz : center[1] + half_sz, center[0] - half_sz : center[0] + half_sz]
    bbox_crop = [(center[0] - half_sz) / img_w, (center[1] - half_sz) / img_h, crop_sz / img_w, crop_sz / img_h]

    return frame_crop, bbox_crop


def ldmk_norm_by_bbox(ldmk, bbox, is_inverse=False):

    ldmk_new = np.zeros(ldmk.shape, dtype=ldmk.dtype)

    if not is_inverse:
        ldmk_new[:, 0] = (ldmk[:, 0] - bbox[0]) / bbox[2]
        ldmk_new[:, 1] = (ldmk[:, 1] - bbox[1]) / bbox[3]

    else:
        ldmk_new[:, 0] = ldmk[:, 0] * bbox[2] + bbox[0]
        ldmk_new[:, 1] = ldmk[:, 1] * bbox[3] + bbox[1]

    return ldmk_new


def draw_kp(frame, kp, size, color=(255, 255, 255)):

    if frame is None:
        frame = np.zeros((size[0], size[1], 3), dtype=np.uint8)
    else:
        frame = cv2.resize(frame, size)
    for i in range(kp.shape[0]):
        x = int((kp[i][0]) * size[0])
        y = int((kp[i][1]) * size[1])
        frame = cv2.circle(frame, (x, y), 1, color, -1)
    return frame

def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin
    assert isinstance(input, torch.Tensor)
    if posinf is None:
        posinf = torch.finfo(input.dtype).max
    if neginf is None:
        neginf = torch.finfo(input.dtype).min
    assert nan == 0
    return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)


def build_outer_optimizer_and_scheduler(conf, G, D):
    base_params_id = list(map(id, G.dense_motion_network.parameters()))
    if conf["model"]["generator"].get("ladder", False):
        base_params_id += list(map(id, G.ladder_network.parameters()))
    warp_params = filter(lambda p: id(p) in base_params_id, G.parameters())
    refine_params = filter(lambda p: id(p) not in base_params_id, G.parameters())
    optim_G = torch.optim.Adam(
        [
            {"params": refine_params},
            {
                "params": warp_params,
                "lr": conf["train"]["lr_generator"] * conf["train"].get("warplr_tune", 1.0),
            },
        ],
        lr=conf["train"]["lr_generator"],
        betas=(conf["train"].get("outer_beta_1", 0.5), conf["train"].get("outer_beta_2", 0.999)),
    )
    optim_D = torch.optim.Adam(
        D.parameters(), lr=conf["train"]["lr_discriminator"], betas=(conf["train"].get("outer_beta_1", 0.5), conf["train"].get("outer_beta_2", 0.999))
    )

    scheduler_G = MultiStepLR(
        optim_G,
        conf["train"]["epoch_milestones"],
        gamma=0.1,
        last_epoch=-1,
    )
    scheduler_D = MultiStepLR(
        optim_D,
        conf["train"]["epoch_milestones"],
        gamma=0.1,
        last_epoch=-1,
    )
    return optim_G, optim_D, scheduler_G, scheduler_D


def build_inner_optimizer(conf, G_full_clone, D_full_clone):
    base_params_id = list(map(id, G_full_clone.generator.dense_motion_network.parameters()))
    if conf["model"]["generator"].get("ladder", False):
        base_params_id += list(map(id, G_full_clone.generator.ladder_network.parameters()))
    warp_params = filter(lambda p: id(p) in base_params_id, G_full_clone.generator.parameters())
    refine_params = filter(lambda p: id(p) not in base_params_id, G_full_clone.generator.parameters())
    inner_optimizer_G = torch.optim.Adam(
                                    [
                                        {"params": refine_params},
                                        {
                                            "params": warp_params,
                                            "lr": conf["train"]["inner_lr_generator"] * conf["train"].get("inner_warplr_tune", 1.0),
                                        },
                                    ],
                                    lr=conf["train"]["inner_lr_generator"],
                                    betas=(conf["train"].get("inner_beta_1", 0.5), conf["train"].get("inner_beta_2", 0.999)),
                                )
    inner_optimizer_D = torch.optim.Adam(
        D_full_clone.discriminator.parameters(), lr=conf["train"]["inner_lr_discriminator"], betas=(conf["train"].get("inner_beta_1", 0.5), conf["train"].get("inner_beta_2", 0.999))
    )
    return inner_optimizer_G, inner_optimizer_D


def build_full_model(conf, args, G, D):
    G_full = GeneratorFullModel(
        None,
        G,
        D,
        conf["train"],
        conf["model"].get("arch", None),
        rank=args["local_rank"],
        conf=conf,
    )
    if conf["model"]["discriminator"].get("type", "MultiPatchGan") == "MultiPatchGan":
        D_full = DiscriminatorFullModel(None, G, D, conf["train"])
    else:
        raise Exception("Unsupported discriminator type: {}".format(conf["model"]["discriminator"].get("type", "MultiPatchGan")))

    # w/ sync-batchnorm at modules/util.py
    G_full.generator = torch.nn.SyncBatchNorm.convert_sync_batchnorm(G_full.generator)
    G_full = DDP(G_full, device_ids=[args["local_rank"]], find_unused_parameters=True)
    D_full = DDP(
        D_full,
        device_ids=[args["local_rank"]],
        find_unused_parameters=True,
        broadcast_buffers=False,
    )
    return G_full, D_full


def clone_model(conf, args, G, D):
    G_full_clone = GeneratorFullModel(
        None,
        G,
        D,
        conf["train"],
        conf["model"].get("arch", None),
        rank=args["local_rank"],
        conf=conf,
    )
    G_full_clone.cuda()
    D_full_clone = DiscriminatorFullModel(None, G, D, conf["train"])
    D_full_clone.cuda()
    
    return G_full_clone, D_full_clone


def convert_data_to_cuda(data):
    for key, value in data.items():
        if isinstance(value, list):
            if isinstance(value[0], (str, list)):
                continue
            data[key] = [v.cuda() for v in value]
        elif isinstance(value, str):
            continue
        else:
            data[key] = value.cuda()
    return data


def return_batch_data(data, start, end):
    batch_data = {}
    for key, value in data.items():
        batch_data[key] = value[start:end, ...]
    return batch_data


def return_cls_data(data, index):
    cls_data = {}
    for key, value in data.items():
        cls_data[key] = value[:, index, ...]
    return cls_data


def process_vis_data(data):
    for key, value in data.items():
        if isinstance(value, list):
            if isinstance(value[0], str):
                continue
            data[key] = [v.cpu() for v in value]
        elif isinstance(value, str):
            continue
        else:
            data[key] = value.cpu().transpose(0, 1).reshape(-1, *value.shape[2:])
    return data


def save_events(writer, losses_G, loss_G, step, losses_D=None, loss_D=None, generated=None, loss_G_init=None, loss_D_init=None):
    for key in losses_G:
        writer.Scalar(key + "_G", losses_G[key].mean(), step)
    if losses_D is not None:
        for key in losses_D:
            writer.Scalar(key + "_D", losses_D[key].mean(), step)
        writer.Scalar("loss_D", loss_D, step)
    writer.Scalar("loss_G", loss_G, step)
    if loss_D_init is not None:
        writer.Scalar("loss_D_init", loss_D_init, step)
    if loss_G_init is not None:
        writer.Scalar("loss_G_init", loss_G_init, step)
    if generated is not None:
        writer.Image("Pred", generated["prediction"][:16], step)


def save_training_images(conf, args, writer, generated, data, step, num):
    writer.save_image(
                generated["prediction"].cpu(),
                generated["deformed"].cpu(),
                step,
                data["source"],
                data["driving"],
                num=num,
                src_ldmk_line=data["source_line"],
                drv_ldmk_line=data["driving_line"],
            )


def reduce_loss_dict(loss_dict, world_size):
    if world_size < 2:
        return loss_dict

    with torch.no_grad():
        keys = []
        losses = []

        for k in sorted(loss_dict.keys()):
            keys.append(k)
            losses.append(loss_dict[k])

        losses = torch.stack(losses, 0)
        dist.reduce(losses, dst=0)

        if dist.get_rank() == 0:
            losses /= world_size

        reduced_losses = {k: v for k, v in zip(keys, losses)}

    return reduced_losses


def reduce_loss(loss, world_size):
    if world_size < 2:
        return loss

    with torch.no_grad():
        dist.reduce(loss, dst=0) 
        return loss / world_size