README.md 3.99 KB
Newer Older
huaerkl's avatar
v1.0  
huaerkl committed
1
2
3
# ViT 

## 论文
chenzk's avatar
v1.2  
chenzk committed
4
5
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
- https://arxiv.org/abs/2010.11929
chenzk's avatar
v1.2.4  
chenzk committed
6

huaerkl's avatar
v1.0  
huaerkl committed
7
## 模型结构
chenzk's avatar
v1.2  
chenzk committed
8
Vision Transformer先将图像用卷积进行分块以降低计算量,再对每一块进行展平处理变成序列,然后将序列添加位置编码和cls token,再输入多层Transformer结构提取特征,最后将cls tooken取出来通过一个MLP(多层感知机)用于分类。
chenzk's avatar
v1.2.4  
chenzk committed
9
10
11
<div align=center>
    <img src="./doc/vit.png"/>
</div>
chenzk's avatar
v1.2.1  
chenzk committed
12

huaerkl's avatar
v1.0  
huaerkl committed
13
## 算法原理
chenzk's avatar
v1.2  
chenzk committed
14
图像领域借鉴《Transformer is all you need!》算法论文中的Encoder结构提取特征,Transformer的核心思想是利用注意力模块attention提取特征:
chenzk's avatar
v1.2.4  
chenzk committed
15
16
17
<div align=center>
    <img src="./doc/attention.png"/>
</div>
chenzk's avatar
v1.2.1  
chenzk committed
18

huaerkl's avatar
v1.0  
huaerkl committed
19
## 环境配置
chenzk's avatar
v1.2.3  
chenzk committed
20
21
22
```
mv megatron-deepspeed-vit_pytorch megatron-deepspeed-vit # 去框架名后缀
```
chenzk's avatar
v1.2.2  
chenzk committed
23
### Docker(方法一)
chenzk's avatar
v1.1  
chenzk committed
24
```
chenzk's avatar
v1.2.5  
chenzk committed
25
26
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10
# <your IMAGE ID>用以上拉取的docker的镜像ID a4dd5be0ca23替换
dcuai's avatar
dcuai committed
27
docker run --shm-size 10g --network=host --name=megatron --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal -v $PWD/megatron-deepspeed-vit:/home/megatron-deepspeed-vit -it <your IMAGE ID> bash
chenzk's avatar
v1.1  
chenzk committed
28
29
pip install -r requirements.txt
```
chenzk's avatar
v1.2.2  
chenzk committed
30
### Dockerfile(方法二)
chenzk's avatar
v1.1  
chenzk committed
31
32
```
cd megatron-deepspeed-vit/docker
chenzk's avatar
v1.2.2  
chenzk committed
33
docker build --no-cache -t megatron:latest .
dcuai's avatar
dcuai committed
34
docker run --rm --shm-size 10g --network=host --name=megatron --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal -v $PWD/../../megatron-deepspeed-vit:/home/megatron-deepspeed-vit -it megatron:latest bash
chenzk's avatar
v1.1  
chenzk committed
35
36
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt
```
chenzk's avatar
v1.2.2  
chenzk committed
37
### Anaconda(方法三)
huaerkl's avatar
v1.0  
huaerkl committed
38
1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装:
chenzk's avatar
chenzk committed
39
https://developer.sourcefind.cn/tool/
huaerkl's avatar
v1.0  
huaerkl committed
40
```
chenzk's avatar
v1.2.5  
chenzk committed
41
42
43
44
45
46
47
DTK驱动:dtk24.04.1
python:python3.10
torch:2.1.0
torchvision:0.16.0
torchaudio:2.1.2
deepspeed:0.12.3
apex:1.1.0
huaerkl's avatar
v1.0  
huaerkl committed
48
49
50
51
52
53
54
55
56
```
`Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应`

2、其它非特殊库参照requirements.txt安装
```
pip install -r requirements.txt
```
## 数据集

chenzk's avatar
v1.2.2  
chenzk committed
57
58
59
`ILSVRC 2012`

- https://image-net.org/challenges/LSVRC/index.php
huaerkl's avatar
v1.0  
huaerkl committed
60
61
62
63

`imagenet 2012` 的解压与整理方法参照链接:
https://www.jianshu.com/p/a42b7d863825

chenzk's avatar
chenzk committed
64
项目提供用于试验训练的迷你数据集[tiny-imagenet-200](http://cs231n.stanford.edu/tiny-imagenet-200.zip),下载解压后将名字tiny-imagenet-200改为data,训练数据目录结构如下,用于正常训练的完整数据集请按此目录结构进行制备:
huaerkl's avatar
v1.0  
huaerkl committed
65
66
67
68
69
70
71
72
73
74
```
data
    |
    train
        |
        n01440764
        n01806143
        ...
    val
        |
chenzk's avatar
v1.1  
chenzk committed
75
76
        n01440764
        n01824575
huaerkl's avatar
v1.0  
huaerkl committed
77
78
79
80
81
82
83
84
85
86
        ...
    test
        |
        images
            |
            test_x.JPEG
            test_xxx.JPEG
            ...
```
## 训练
chenzk's avatar
v1.2.2  
chenzk committed
87
### 单机多卡
huaerkl's avatar
v1.0  
huaerkl committed
88
```
chenzk's avatar
v1.2.2  
chenzk committed
89
cd megatron-deepspeed-vit
chenzk's avatar
v1.2.6  
chenzk committed
90
91
# sh examples/dspvit_1node_minidata.sh #用于快速试验迷你数据集
sh examples/dspvit_1node.sh # 训练完整imagenet2012
chenzk's avatar
v1.2.5  
chenzk committed
92
# 训练过程中报:Message: 'is_pipe_partitioned= False',不影响训练,为deepspeed本身bug,如需要屏蔽可参照deepspeed github官网issue进行源码修改来解决。
huaerkl's avatar
v1.0  
huaerkl committed
93
```
chenzk's avatar
v1.2.2  
chenzk committed
94
### 单机单卡
huaerkl's avatar
v1.0  
huaerkl committed
95
```
chenzk's avatar
v1.1  
chenzk committed
96
sh examples/dspvit_1dcu.sh
huaerkl's avatar
v1.0  
huaerkl committed
97
```
chenzk's avatar
v1.2.5  
chenzk committed
98

huaerkl's avatar
v1.0  
huaerkl committed
99
## result
chenzk's avatar
v1.2.4  
chenzk committed
100
101
102
<div align=center>
    <img src="./doc/classify.png"/>
</div>
chenzk's avatar
v1.2.5  
chenzk committed
103

huaerkl's avatar
v1.0  
huaerkl committed
104
## 应用场景
wanglch's avatar
wanglch committed
105

huaerkl's avatar
v1.0  
huaerkl committed
106
### 算法类别
wanglch's avatar
wanglch committed
107

huaerkl's avatar
v1.0  
huaerkl committed
108
`图像分类`
wanglch's avatar
wanglch committed
109

chenzk's avatar
v1.2.2  
chenzk committed
110
### 热点应用行业
wanglch's avatar
wanglch committed
111

chenzk's avatar
v1.2.4  
chenzk committed
112
`制造,环保,医疗,气象`
wanglch's avatar
wanglch committed
113
114
115
116

## 预训练权重


chenzk's avatar
v1.2  
chenzk committed
117
## 源码仓库及问题反馈
wanglch's avatar
wanglch committed
118

chenzk's avatar
chenzk committed
119
- https://developer.sourcefind.cn/codes/modelzoo/megatron-deepspeed-vit_pytorch
wanglch's avatar
wanglch committed
120

huaerkl's avatar
v1.0  
huaerkl committed
121
122
123
124
125
126
## 参考资料
- https://github.com/bigscience-workshop/Megatron-DeepSpeed

- https://www.deepspeed.ai/getting-started/

- https://deepspeed.readthedocs.io/en/latest/index.html