fused_layer_norm.py 2.65 KB
Newer Older
huaerkl's avatar
v1.0  
huaerkl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""This code is copied fron NVIDIA apex:
      https://github.com/NVIDIA/apex
   with some changes. """

import numbers


from megatron import get_args
from megatron import mpu
from packaging import version
from torch import nn
from torch.nn import init
from torch.nn.parameter import Parameter
import importlib
import torch
import torch.nn.functional as F
chenzk's avatar
v1.2.5  
chenzk committed
32
from apex.normalization.fused_layer_norm import FusedLayerNormAffineFunction
huaerkl's avatar
v1.0  
huaerkl committed
33

chenzk's avatar
v1.2.5  
chenzk committed
34
35
global fused_layer_norm_cuda
fused_layer_norm_cuda = None
huaerkl's avatar
v1.0  
huaerkl committed
36
37
38
39
40
class MixedFusedLayerNorm(torch.nn.Module):

  def __init__(self, normalized_shape, eps=1e-5):
    super(MixedFusedLayerNorm, self).__init__()

chenzk's avatar
v1.2.5  
chenzk committed
41
42
    global fused_layer_norm_cuda
    fused_layer_norm_cuda = importlib.import_module("fused_layer_norm_cuda")
huaerkl's avatar
v1.0  
huaerkl committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    if isinstance(normalized_shape, numbers.Integral):
        normalized_shape = (normalized_shape,)
    self.normalized_shape = torch.Size(normalized_shape)
    self.eps = eps
    self.weight = Parameter(torch.Tensor(*normalized_shape))
    self.bias = Parameter(torch.Tensor(*normalized_shape))
    self.reset_parameters()

    args = get_args()
    self.layernorm_tp_auto_sync = args.sync_tp_duplicated_parameters

    self.use_meg_ds_fused_layer_norm = (
      args.bf16 # Current Meg-DS cuda kernel has better throughput than torch.nn.LayerNorm
      or version.parse(torch.__version__) >= version.parse("1.11.0") # https://github.com/pytorch/pytorch/pull/66920
    )


  def reset_parameters(self):

    init.ones_(self.weight)
    init.zeros_(self.bias)


  def forward(self, input):

    if self.layernorm_tp_auto_sync:
      torch.distributed.all_reduce(self.weight, op=torch.distributed.ReduceOp.AVG, group=mpu.get_tensor_model_parallel_group())
      torch.distributed.all_reduce(self.bias, op=torch.distributed.ReduceOp.AVG, group=mpu.get_tensor_model_parallel_group())

    if self.use_meg_ds_fused_layer_norm:
        return FusedLayerNormAffineFunction.apply(
            input, self.weight, self.bias, self.normalized_shape, self.eps)
    else:
        return F.layer_norm(input, self.normalized_shape, self.weight, self.bias)