parallel_state.py 31.2 KB
Newer Older
liangjing's avatar
update  
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Model and data parallel groups."""

import torch
from typing import Optional

from .utils import GlobalMemoryBuffer

# Intra-layer model parallel group that the current rank belongs to.
_TENSOR_MODEL_PARALLEL_GROUP = None
# Inter-layer model parallel group that the current rank belongs to.
_PIPELINE_MODEL_PARALLEL_GROUP = None
# Model parallel group (both intra- and pipeline) that the current rank belongs to.
_MODEL_PARALLEL_GROUP = None
# Embedding group.
_EMBEDDING_GROUP = None
# Position embedding group.
_POSITION_EMBEDDING_GROUP = None
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None
_DATA_PARALLEL_GROUP_GLOO = None
# FP8 amax reduction group.
_AMAX_REDUCTION_GROUP = None

_VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
_VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_PIPELINE_MODEL_PARALLEL_SPLIT_RANK = None

# These values enable us to change the mpu sizes on the fly.
_MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_TENSOR_MODEL_PARALLEL_RANK = None
_MPU_PIPELINE_MODEL_PARALLEL_RANK = None

# A list of ranks that have a copy of the embedding.
_EMBEDDING_GLOBAL_RANKS = None

# A list of ranks that have a copy of the position embedding.
_POSITION_EMBEDDING_GLOBAL_RANKS = None

# A list of global ranks for each pipeline group to ease calculation of the source
# rank when broadcasting from the first or last pipeline stage.
_PIPELINE_GLOBAL_RANKS = None

# For DeepSpeed's sequence parallel
_SEQUENCE_PARALLEL_GROUP = None
_SEQUENCE_PARALLEL_WORLD_SIZE = None
_SEQUENCE_PARALLEL_RANK = None

# This group includes processes for both data and sequence parallelisms.
# We use this group to reduce gradients and shard parameters and optimizer stages for ZeRO.
_SEQUENCE_DATA_PARALLEL_GROUP = None
_SEQUENCE_DATA_PARALLEL_WORLD_SIZE = None
_SEQUENCE_DATA_PARALLEL_RANK = None

# A list of global ranks for each data parallel group to ease calculation of the source
# rank when broadcasting weights from src to all other data parallel ranks
_DATA_PARALLEL_GLOBAL_RANKS = None

# Memory buffers to avoid dynamic memory allocation
_GLOBAL_MEMORY_BUFFER = None


def initialize_model_parallel(
    tensor_model_parallel_size: int = 1,
    pipeline_model_parallel_size: int = 1,
    sequence_parallel_size: int = 1,
    virtual_pipeline_model_parallel_size: Optional[int] = None,
    pipeline_model_parallel_split_rank: Optional[int] = None,
    use_fp8: bool = False,
    use_distributed_optimizer: bool = False,
) -> None:
    """Initialize model data parallel groups.

    Arguments:
        tensor_model_parallel_size (int, default = 1):
            The number of GPUs to split individual tensors across.

        pipeline_model_parallel_size (int, default = 1):
            The number of tensor parallel GPU groups to split the
            Transformer layers across. For example, if
            tensor_model_parallel_size is 4 and
            pipeline_model_parallel_size is 2, the model will be split
            into 2 groups of 4 GPUs.

        virtual_pipeline_model_parallel_size (int, optional):
            The number of stages that each pipeline group will have,
            interleaving as necessary. If None, no interleaving is
            performed. For example, if tensor_model_parallel_size is 1,
            pipeline_model_parallel_size is 4,
            virtual_pipeline_model_parallel_size is 2, and there are
            16 transformer layers in the model, the model will be
            split into 8 stages with two layers each and each GPU
            would get 2 stages as such (layer number starting with 1):

            GPU 0: [1, 2] [9, 10]
            GPU 1: [3, 4] [11, 12]
            GPU 2: [5, 6] [13, 14]
            GPU 3: [7, 8] [15, 16]

        pipeline_model_parallel_split_rank (int, optional):
            For models with both an encoder and decoder, the rank in
            pipeline to switch between encoder and decoder (i.e. the
            first rank of the decoder). This allows the user to set
            the pipeline parallel size of the encoder and decoder
            independently. For example, if
            pipeline_model_parallel_size is 8 and
            pipeline_model_parallel_split_rank is 3, then ranks 0-2
            will be the encoder and ranks 3-7 will be the decoder.

        use_fp8 (bool, default = False):
            Construct GPU groups needed for FP8 training, namely for
            amax reduction across the product of the data-parallel and
            tensor-parallel groups.

    Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we
    use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
    the model pipeline. The present function will
    create 8 tensor model-parallel groups, 4 pipeline model-parallel groups
    and 8 data-parallel groups as:
        8 data_parallel groups:
            [g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]
        8 tensor model-parallel groups:
            [g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15]
        4 pipeline model-parallel groups:
            [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15]
    Note that for efficiency, the caller should make sure adjacent ranks
    are on the same DGX box. For example if we are using 2 DGX-1 boxes
    with a total of 16 GPUs, rank 0 to 7 belong to the first box and
    ranks 8 to 15 belong to the second box.

    """
    # Get world size and rank. Ensure some consistencies.
    assert torch.distributed.is_initialized()
    world_size: int = torch.distributed.get_world_size()

    if world_size % (tensor_model_parallel_size * pipeline_model_parallel_size) != 0:
        raise RuntimeError(
            f"world_size ({world_size}) is not divisible by tensor_model_parallel_size "
            f"({tensor_model_parallel_size}) x pipeline_model_parallel_size ({pipeline_model_parallel_size})"
        )

    enable_ds_sequence_parallel = sequence_parallel_size > 1
    if enable_ds_sequence_parallel:
        assert tensor_model_parallel_size == 1 and pipeline_model_parallel_size == 1, \
        'DeepSpeed\'s sequence parallel does not work with tensor parallel or pipeline parallel'

        if world_size % sequence_parallel_size != 0:
            raise RuntimeError(
                f"world_size ({world_size}) is not divisible by sequence_parallel_size {sequence_parallel_size})"
            )

    data_parallel_size: int = world_size // (tensor_model_parallel_size * pipeline_model_parallel_size * sequence_parallel_size)
    sequence_data_parallel_size: int = sequence_parallel_size * data_parallel_size

    num_tensor_model_parallel_groups: int = world_size // tensor_model_parallel_size
    num_pipeline_model_parallel_groups: int = world_size // pipeline_model_parallel_size
    num_data_parallel_groups: int = world_size // data_parallel_size
    num_sequence_parallel_groups: int = world_size // sequence_parallel_size
    num_sequence_data_parallel_groups: int = world_size // sequence_parallel_size // data_parallel_size

    if virtual_pipeline_model_parallel_size is not None:
        if not pipeline_model_parallel_size > 2:
            raise RuntimeError("pipeline-model-parallel size should be greater than 2 with " "interleaved schedule")
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = 0
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = virtual_pipeline_model_parallel_size

    if pipeline_model_parallel_split_rank is not None:
        global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
        _PIPELINE_MODEL_PARALLEL_SPLIT_RANK = pipeline_model_parallel_split_rank

    rank = torch.distributed.get_rank()

    # Build the data-parallel groups.
    global _DATA_PARALLEL_GROUP
    global _DATA_PARALLEL_GROUP_GLOO
    global _DATA_PARALLEL_GLOBAL_RANKS
    assert _DATA_PARALLEL_GROUP is None, 'data parallel group is already initialized'
    all_data_parallel_group_ranks = []
    for i in range(pipeline_model_parallel_size):
        start_rank = i * num_pipeline_model_parallel_groups
        end_rank = (i + 1) * num_pipeline_model_parallel_groups

        if sequence_parallel_size > 1:
            tp_or_sp_size = sequence_parallel_size
        else:
            tp_or_sp_size = tensor_model_parallel_size

        for j in range(tp_or_sp_size):
            ranks = range(start_rank + j, end_rank, tp_or_sp_size)
            all_data_parallel_group_ranks.append(list(ranks))
            group = torch.distributed.new_group(ranks)
            if use_distributed_optimizer:
                group_gloo = torch.distributed.new_group(ranks, backend="gloo")
            else:
                group_gloo = None
            if rank in ranks:
                _DATA_PARALLEL_GROUP = group
                _DATA_PARALLEL_GROUP_GLOO = group_gloo
                _DATA_PARALLEL_GLOBAL_RANKS = ranks

    # Build the sequence parallel groups.
    global _SEQUENCE_PARALLEL_GROUP
    assert _SEQUENCE_PARALLEL_GROUP is None, \
        'sequence parallel group is already initialized'
    for i in range(num_sequence_parallel_groups):
        ranks = range(i * sequence_parallel_size,
                      (i + 1) * sequence_parallel_size)
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
            _SEQUENCE_PARALLEL_GROUP = group

    # Build the sequence data parallel groups.
    global _SEQUENCE_DATA_PARALLEL_GROUP
    assert _SEQUENCE_DATA_PARALLEL_GROUP is None, \
        'sequence data parallel group is already initialized'
    all_data_sequence_parallel_group_ranks = []
    if enable_ds_sequence_parallel:
        for i in range(num_sequence_data_parallel_groups):
            ranks = range(i * sequence_data_parallel_size,
                        (i + 1) * sequence_data_parallel_size)
            group = torch.distributed.new_group(ranks)
            all_data_sequence_parallel_group_ranks.append(list(ranks))
            if rank in ranks:
                _SEQUENCE_DATA_PARALLEL_GROUP = group
    else:
        _SEQUENCE_DATA_PARALLEL_GROUP = _DATA_PARALLEL_GROUP

    # Build the model-parallel groups.
    global _MODEL_PARALLEL_GROUP
    assert _MODEL_PARALLEL_GROUP is None, 'model parallel group is already initialized'
    num_model_parallel_groups = sequence_data_parallel_size if enable_ds_sequence_parallel else data_parallel_size
    model_parallel_group_ranks = all_data_sequence_parallel_group_ranks if enable_ds_sequence_parallel else all_data_parallel_group_ranks
    for i in range(num_model_parallel_groups):
        ranks = [parallel_group_ranks[i] for parallel_group_ranks in model_parallel_group_ranks]
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
            _MODEL_PARALLEL_GROUP = group

    # Build the tensor model-parallel groups.
    global _TENSOR_MODEL_PARALLEL_GROUP
    assert _TENSOR_MODEL_PARALLEL_GROUP is None, 'tensor model parallel group is already initialized'
    for i in range(num_tensor_model_parallel_groups):
        ranks = range(i * tensor_model_parallel_size, (i + 1) * tensor_model_parallel_size)
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
            _TENSOR_MODEL_PARALLEL_GROUP = group


    # Build the pipeline model-parallel groups and embedding groups
    # (first and last rank in each pipeline model-parallel group).
    global _PIPELINE_MODEL_PARALLEL_GROUP
    global _PIPELINE_GLOBAL_RANKS
    assert _PIPELINE_MODEL_PARALLEL_GROUP is None, 'pipeline model parallel group is already initialized'
    global _EMBEDDING_GROUP
    global _EMBEDDING_GLOBAL_RANKS
    assert _EMBEDDING_GROUP is None, 'embedding group is already initialized'
    global _POSITION_EMBEDDING_GROUP
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    assert _POSITION_EMBEDDING_GROUP is None, 'position embedding group is already initialized'
    for i in range(num_pipeline_model_parallel_groups):
        ranks = range(i, world_size, num_pipeline_model_parallel_groups)
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
            _PIPELINE_MODEL_PARALLEL_GROUP = group
            _PIPELINE_GLOBAL_RANKS = ranks
        # Setup embedding group (to exchange gradients between
        # first and last stages).
        if len(ranks) > 1:
            embedding_ranks = [ranks[0], ranks[-1]]
            position_embedding_ranks = [ranks[0]]
            if pipeline_model_parallel_split_rank is not None:
                if ranks[pipeline_model_parallel_split_rank] not in embedding_ranks:
                    embedding_ranks = [ranks[0], ranks[pipeline_model_parallel_split_rank], ranks[-1]]
                if ranks[pipeline_model_parallel_split_rank] not in position_embedding_ranks:
                    position_embedding_ranks = [ranks[0], ranks[pipeline_model_parallel_split_rank]]
        else:
            embedding_ranks = ranks
            position_embedding_ranks = ranks

        group = torch.distributed.new_group(embedding_ranks)
        if rank in embedding_ranks:
            _EMBEDDING_GROUP = group
        if rank in ranks:
            _EMBEDDING_GLOBAL_RANKS = embedding_ranks

        group = torch.distributed.new_group(position_embedding_ranks)
        if rank in position_embedding_ranks:
            _POSITION_EMBEDDING_GROUP = group
        if rank in ranks:
            _POSITION_EMBEDDING_GLOBAL_RANKS = position_embedding_ranks

    # Build the FP8 groups.
    global _AMAX_REDUCTION_GROUP
    assert _AMAX_REDUCTION_GROUP is None, \
        'FP8 amax reduction group is already initialized'
    if use_fp8:
        amax_group_size: int = tensor_model_parallel_size * data_parallel_size
        num_amax_groups: int = world_size // amax_group_size
        for i in range(num_amax_groups):
            start_rank = i * amax_group_size
            end_rank = (i + 1) * amax_group_size
            ranks = range(start_rank, end_rank)
            group = torch.distributed.new_group(ranks)
            if rank in ranks:
                _AMAX_REDUCTION_GROUP = group

    # Initialize global memory buffer
    # This isn't really "parallel state" but there isn't another good place to
    # put this. If we end up with a more generic initialization of megatron-core
    # we could stick it there
    _set_global_memory_buffer()


def is_unitialized():
    """Useful for code segments that may be accessed with or without mpu initialization"""
    return _DATA_PARALLEL_GROUP is None


def model_parallel_is_initialized():
    """Check if model and data parallel groups are initialized."""
    if _TENSOR_MODEL_PARALLEL_GROUP is None or _PIPELINE_MODEL_PARALLEL_GROUP is None or _DATA_PARALLEL_GROUP is None:
        return False
    return True

def sequence_parallel_is_initialized():
    """Check if sequence and data parallel groups are initialized."""
    if _SEQUENCE_PARALLEL_GROUP is None or \
        _DATA_PARALLEL_GROUP is None:
        return False
    return True

def sequence_data_parallel_is_initialized():
    """Check if sequence data parallel groups are initialized."""
    if _SEQUENCE_DATA_PARALLEL_GROUP is None:
        return False
    return True

def get_model_parallel_group():
    """Get the model parallel group the caller rank belongs to."""
    assert _MODEL_PARALLEL_GROUP is not None, 'model parallel group is not initialized'
    return _MODEL_PARALLEL_GROUP


def get_tensor_model_parallel_group(check_initialized=True):
    """Get the tensor model parallel group the caller rank belongs to."""
    if check_initialized:
        assert _TENSOR_MODEL_PARALLEL_GROUP is not None, 'tensor model parallel group is not initialized'
    return _TENSOR_MODEL_PARALLEL_GROUP


def get_pipeline_model_parallel_group():
    """Get the pipeline model parallel group the caller rank belongs to."""
    assert _PIPELINE_MODEL_PARALLEL_GROUP is not None, 'pipeline_model parallel group is not initialized'
    return _PIPELINE_MODEL_PARALLEL_GROUP

def get_sequence_parallel_group():
    """Get the sequence parallel group the caller rank belongs to."""
    assert _SEQUENCE_PARALLEL_GROUP is not None, \
        'sequence parallel group is not initialized'
    return _SEQUENCE_PARALLEL_GROUP


def get_sequence_data_parallel_group():
    """Get the sequence parallel group the caller rank belongs to."""
    assert _SEQUENCE_DATA_PARALLEL_GROUP is not None, \
        'sequence data parallel group is not initialized'
    return _SEQUENCE_DATA_PARALLEL_GROUP


def get_data_parallel_group():
    """Get the data parallel group the caller rank belongs to."""
    assert _DATA_PARALLEL_GROUP is not None, 'data parallel group is not initialized'
    return _DATA_PARALLEL_GROUP


def get_data_parallel_group_gloo():
    """Get the data parallel group-gloo the caller rank belongs to."""
    assert _DATA_PARALLEL_GROUP_GLOO is not None, \
        'data parallel group-gloo is not initialized'
    return _DATA_PARALLEL_GROUP_GLOO


def get_embedding_group():
    """Get the embedding group the caller rank belongs to."""
    assert _EMBEDDING_GROUP is not None, 'embedding group is not initialized'
    return _EMBEDDING_GROUP


def get_position_embedding_group():
    """Get the position embedding group the caller rank belongs to."""
    assert _POSITION_EMBEDDING_GROUP is not None, 'position embedding group is not initialized'
    return _POSITION_EMBEDDING_GROUP


def get_amax_reduction_group():
    """Get the FP8 amax reduction group the caller rank belongs to."""
    assert _AMAX_REDUCTION_GROUP is not None, \
        'FP8 amax reduction group is not initialized'
    return _AMAX_REDUCTION_GROUP


def set_tensor_model_parallel_world_size(world_size):
    """Set the tensor model parallel size"""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = world_size

def set_sequence_parallel_world_size(world_size):
    """Set the sequence  parallel size"""
    global _SEQUENCE_PARALLEL_WORLD_SIZE
    _SEQUENCE_PARALLEL_WORLD_SIZE = world_size

def set_sequence_data_parallel_world_size(world_size):
    """Set the sequence  parallel size"""
    global _SEQUENCE_DATA_PARALLEL_WORLD_SIZE
    _SEQUENCE_DATA_PARALLEL_WORLD_SIZE = world_size

def set_pipeline_model_parallel_world_size(world_size):
    """Set the pipeline model parallel size"""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size

def set_virtual_pipeline_model_parallel_world_size(world_size):
    """Set the pipeline model parallel size"""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size

def set_virtual_pipeline_model_parallel_world_size(world_size):
    """Set the virtual pipeline model parallel size"""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size


def get_tensor_model_parallel_world_size():
    """Return world size for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_tensor_model_parallel_group())

def get_model_parallel_world_size():
    assert get_pipeline_model_parallel_world_size() == 1, "legacy get_model_parallel_world_size is only supported if PP is disabled"
    return get_tensor_model_parallel_world_size()

def get_sequence_parallel_world_size():
    """Return world size for the sequence parallel group."""
    global _SEQUENCE_PARALLEL_WORLD_SIZE
    if _SEQUENCE_PARALLEL_WORLD_SIZE is not None:
        return _SEQUENCE_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_sequence_parallel_group())

def get_sequence_data_parallel_world_size():
    """Return world size for the sequence parallel group."""
    global _SEQUENCE_DATA_PARALLEL_WORLD_SIZE
    if _SEQUENCE_DATA_PARALLEL_WORLD_SIZE is not None:
        return _SEQUENCE_DATA_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_sequence_data_parallel_group())

def get_pipeline_model_parallel_world_size():
    """Return world size for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_pipeline_model_parallel_group())


def set_tensor_model_parallel_rank(rank):
    """Set tensor model parallel rank."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = rank


def get_model_parallel_rank():
    assert get_pipeline_model_parallel_world_size() == 1, "legacy get_model_parallel_rank is only supported if PP is disabled"
    return get_tensor_model_parallel_rank()


def set_sequence_parallel_rank(rank):
    """Set sequence parallel rank."""
    global _SEQUENCE_PARALLEL_RANK
    _SEQUENCE_PARALLEL_RANK = rank


def set_sequence_data_parallel_rank(rank):
    """Set sequence parallel rank."""
    global _SEQUENCE_DATA_PARALLEL_RANK
    _SEQUENCE_DATA_PARALLEL_RANK = rank


def set_pipeline_model_parallel_rank(rank):
    """Set pipeline model parallel rank."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = rank


def set_pipeline_model_parallel_split_rank(rank):
    """Set pipeline model parallel split rank."""
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    _PIPELINE_MODEL_PARALLEL_SPLIT_RANK = rank


def get_tensor_model_parallel_rank():
    """Return my rank for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    if _MPU_TENSOR_MODEL_PARALLEL_RANK is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_tensor_model_parallel_group())


def get_pipeline_model_parallel_rank():
    """Return my rank for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    if _MPU_PIPELINE_MODEL_PARALLEL_RANK is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_pipeline_model_parallel_group())


def get_pipeline_model_parallel_split_rank():
    """Return pipeline model parallel split rank."""
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    return _PIPELINE_MODEL_PARALLEL_SPLIT_RANK


def get_sequence_parallel_rank():
    """Return my rank for the sequence parallel group."""
    global _SEQUENCE_PARALLEL_RANK
    if _SEQUENCE_PARALLEL_RANK is not None:
        return _SEQUENCE_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_sequence_parallel_group())


def get_sequence_data_parallel_rank():
    """Return my rank for the sequence data parallel group."""
    global _SEQUENCE_DATA_PARALLEL_RANK
    if _SEQUENCE_DATA_PARALLEL_RANK is not None:
        return _SEQUENCE_DATA_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_sequence_data_parallel_group())


def is_pipeline_first_stage(ignore_virtual=False):
    """Return True if in the first pipeline model-parallel stage, False otherwise."""
    if not ignore_virtual:
        if (
            get_virtual_pipeline_model_parallel_world_size() is not None
            and get_virtual_pipeline_model_parallel_rank() != 0
        ):
            return False
    return get_pipeline_model_parallel_rank() == 0


def is_pipeline_last_stage(ignore_virtual=False):
    """Return True if in the last pipeline model-parallel stage, False otherwise."""
    if not ignore_virtual:
        virtual_pipeline_model_parallel_world_size = get_virtual_pipeline_model_parallel_world_size()
        if virtual_pipeline_model_parallel_world_size is not None and get_virtual_pipeline_model_parallel_rank() != (
            virtual_pipeline_model_parallel_world_size - 1
        ):
            return False
    return get_pipeline_model_parallel_rank() == (get_pipeline_model_parallel_world_size() - 1)


def is_rank_in_embedding_group(ignore_virtual=False):
    """Return true if current rank is in embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _EMBEDDING_GLOBAL_RANKS
    if ignore_virtual:
        return rank in _EMBEDDING_GLOBAL_RANKS
    if rank in _EMBEDDING_GLOBAL_RANKS:
        if rank == _EMBEDDING_GLOBAL_RANKS[0]:
            return is_pipeline_first_stage(ignore_virtual=False)
        elif rank == _EMBEDDING_GLOBAL_RANKS[-1]:
            return is_pipeline_last_stage(ignore_virtual=False)
        else:
            return True
    return False


def is_rank_in_position_embedding_group():
    """Return true if current rank is in position embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    return rank in _POSITION_EMBEDDING_GLOBAL_RANKS


def is_pipeline_stage_before_split(rank=None):
    """Return True if pipeline stage executes encoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank < _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_after_split(rank=None):
    """Return True if pipeline stage executes decoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank >= _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_at_split():
    """Return true if pipeline stage executes decoder block and next
    stage executes encoder block for a model with both encoder and
    decoder."""
    rank = get_pipeline_model_parallel_rank()
    return is_pipeline_stage_before_split(rank) and is_pipeline_stage_after_split(rank + 1)


def get_virtual_pipeline_model_parallel_rank():
    """Return the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK


def set_virtual_pipeline_model_parallel_rank(rank):
    """Set the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = rank


def get_virtual_pipeline_model_parallel_world_size():
    """Return the virtual pipeline-parallel world size."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE


def set_virtual_pipeline_model_parallel_world_size(world_size):
    """Set the virtual pipeline-parallel world size"""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size


def get_tensor_model_parallel_src_rank():
    """Calculate the global rank corresponding to the first local rank
    in the tensor model parallel group."""
    global_rank = torch.distributed.get_rank()
    local_world_size = get_tensor_model_parallel_world_size()
    return (global_rank // local_world_size) * local_world_size


def get_sequence_parallel_src_rank():
    """Calculate the global rank corresponding to the first local rank
    in the sequence parallel group."""
    global_rank = torch.distributed.get_rank()
    local_world_size = get_sequence_parallel_world_size()
    return (global_rank // local_world_size) * local_world_size


def get_data_parallel_src_rank():
    """Calculate the global rank corresponding to the first local rank
    in the data parallel group."""
    assert _DATA_PARALLEL_GLOBAL_RANKS is not None, "Data parallel group is not initialized"
    return _DATA_PARALLEL_GLOBAL_RANKS[0]


def get_pipeline_model_parallel_first_rank():
    """Return the global rank of the first process in the pipeline for the
    current tensor parallel group"""
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    return _PIPELINE_GLOBAL_RANKS[0]


def get_pipeline_model_parallel_last_rank():
    """Return the global rank of the last process in the pipeline for the
    current tensor parallel group"""
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    last_rank_local = get_pipeline_model_parallel_world_size() - 1
    return _PIPELINE_GLOBAL_RANKS[last_rank_local]


def get_pipeline_model_parallel_next_rank():
    """Return the global rank that follows the caller in the pipeline"""
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size]


def get_pipeline_model_parallel_prev_rank():
    """Return the global rank that preceeds the caller in the pipeline"""
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size]


def get_data_parallel_world_size():
    """Return world size for the data parallel group."""
    return torch.distributed.get_world_size(group=get_data_parallel_group())


def get_data_parallel_rank():
    """Return my rank for the data parallel group."""
    return torch.distributed.get_rank(group=get_data_parallel_group())


def _set_global_memory_buffer():
    """Initialize global buffer"""
    global _GLOBAL_MEMORY_BUFFER
    assert _GLOBAL_MEMORY_BUFFER is None, 'global memory buffer is already initialized'
    _GLOBAL_MEMORY_BUFFER = GlobalMemoryBuffer()


def get_global_memory_buffer():
    """Return the global GlobalMemoryBuffer object"""
    assert _GLOBAL_MEMORY_BUFFER is not None, 'global memory buffer is not initialized'
    return _GLOBAL_MEMORY_BUFFER


def destroy_global_memory_buffer():
    """Sets the global memory buffer to None"""
    global _GLOBAL_MEMORY_BUFFER
    _GLOBAL_MEMORY_BUFFER = None


def destroy_model_parallel():
    """Set the groups to none."""
    global _MODEL_PARALLEL_GROUP
    _MODEL_PARALLEL_GROUP = None
    global _TENSOR_MODEL_PARALLEL_GROUP
    _TENSOR_MODEL_PARALLEL_GROUP = None
    global _PIPELINE_MODEL_PARALLEL_GROUP
    _PIPELINE_MODEL_PARALLEL_GROUP = None
    global _DATA_PARALLEL_GROUP
    _DATA_PARALLEL_GROUP = None
    global _SEQUENCE_PARALLEL_GROUP
    _SEQUENCE_PARALLEL_GROUP = None
    global _SEQUENCE_DATA_PARALLEL_GROUP
    _SEQUENCE_DATA_PARALLEL_GROUP = None
    global _EMBEDDING_GROUP
    _EMBEDDING_GROUP = None
    global _POSITION_EMBEDDING_GROUP
    _POSITION_EMBEDDING_GROUP = None
    global _AMAX_REDUCTION_GROUP
    _AMAX_REDUCTION_GROUP = None
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = None
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = None
    global _GLOBAL_MEMORY_BUFFER
    _GLOBAL_MEMORY_BUFFER = None