Commit 157dc189 authored by zzg_666's avatar zzg_666
Browse files

first commit

parents
Pipeline #3033 canceled with stages
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2018-2020 Open-MMLab.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
# Maya1
## 论文
暂无
## 模型简介
Maya1是一款先进的语音模型,用于生成富有表现力的声音,旨在捕捉真实的人类情感和精确的语音设计。具有如下功能:
-创造你能想象到的任何声音 —— 20年代的英国女孩、美国小伙,或者一个完整的恶魔。
-使用情感标签使其感觉真实:笑、哭、低语、愤怒、叹息、喘息。
-即时流式传输,听起来生动,3B参数,在单个GPU上运行
-超越顶级专有模型。由Maya Research开发。
## 环境依赖
- 列举基础环境需求,根据实际情况填写
| 软件 | 版本 |
| :------: | :------: |
| DTK | 25.04.2 |
| python | 3.10 |
| transformers | 4.57.1 |
| pytorch | 2.7.1+das.opt1.dtk25042 |
推荐使用镜像:
- 挂载地址`-v``{docker_name}``{docker_image_name}`根据实际模型情况修改
```bash
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.7.1-ubuntu22.04-dtk25.04.2-py3.10-alpha
docker run -it --shm-size 200g --network=host --name {docker_name} --privileged --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro {imageID} bash
cd /your_code_path/maya1_pytorch
pip install -r requirements.txt
```
更多镜像可前往[光源](https://sourcefind.cn/#/service-list)下载使用。
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.sourcefind.cn/tool/)开发者社区下载安装,其它包参照requirements.txt安装:
```
pip install -r requirements.txt
```
## 数据集
暂无
## 训练
暂无
## 推理
### transformers
#### 单机推理
```bash
export HF_ENDPOINT=https://hf-mirror.com
export HIP_VISIBLE_DEVICES=0
python mya.py
```
## 效果展示
Text: Hello! This is Maya1 <laugh_harder> the best open source voice AI model with emotions.
[out.wav](./doc/output.wav)
### 精度
DCU与GPU精度一致,推理框架:pytorch。
## 预训练权重
| 模型名称 | 权重大小 | DCU型号 | 最低卡数需求 |下载地址|
|:-----:|:----------:|:----------:|:---------------------:|:----------:|
| maya1 | 3B | K100AI,BW1000 | 1 | [下载地址](https://huggingface.co/maya-research/maya1) |
## 源码仓库及问题反馈
- https://developer.sourcefind.cn/codes/modelzoo/maya1_pytorch
## 参考资料
- https://huggingface.co/maya-research/maya1
File added
icon.png

64.4 KB

# 模型唯一标识
modelCode = 1811
# 模型名称
modelName= Maya1_pytorch
# 模型描述
modelDescription=Maya1是一款先进的语音模型,用于生成富有表现力的声音,旨在捕捉真实的人类情感和精确的语音设计。
# 应用场景
processType=推理
# 算法类别
appScenario=语音合成
# 框架类型
frameType=pytorch
# 加速卡类型
accelerateType=BW1000,K100AI
#!/usr/bin/env python3
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from snac import SNAC
import soundfile as sf
import numpy as np
CODE_START_TOKEN_ID = 128257
CODE_END_TOKEN_ID = 128258
CODE_TOKEN_OFFSET = 128266
SNAC_MIN_ID = 128266
SNAC_MAX_ID = 156937
SNAC_TOKENS_PER_FRAME = 7
SOH_ID = 128259
EOH_ID = 128260
SOA_ID = 128261
BOS_ID = 128000
TEXT_EOT_ID = 128009
def build_prompt(tokenizer, description: str, text: str) -> str:
"""Build formatted prompt for Maya1."""
soh_token = tokenizer.decode([SOH_ID])
eoh_token = tokenizer.decode([EOH_ID])
soa_token = tokenizer.decode([SOA_ID])
sos_token = tokenizer.decode([CODE_START_TOKEN_ID])
eot_token = tokenizer.decode([TEXT_EOT_ID])
bos_token = tokenizer.bos_token
formatted_text = f'<description="{description}"> {text}'
prompt = (
soh_token + bos_token + formatted_text + eot_token +
eoh_token + soa_token + sos_token
)
return prompt
def extract_snac_codes(token_ids: list) -> list:
"""Extract SNAC codes from generated tokens."""
try:
eos_idx = token_ids.index(CODE_END_TOKEN_ID)
except ValueError:
eos_idx = len(token_ids)
snac_codes = [
token_id for token_id in token_ids[:eos_idx]
if SNAC_MIN_ID <= token_id <= SNAC_MAX_ID
]
return snac_codes
def unpack_snac_from_7(snac_tokens: list) -> list:
"""Unpack 7-token SNAC frames to 3 hierarchical levels."""
if snac_tokens and snac_tokens[-1] == CODE_END_TOKEN_ID:
snac_tokens = snac_tokens[:-1]
frames = len(snac_tokens) // SNAC_TOKENS_PER_FRAME
snac_tokens = snac_tokens[:frames * SNAC_TOKENS_PER_FRAME]
if frames == 0:
return [[], [], []]
l1, l2, l3 = [], [], []
for i in range(frames):
slots = snac_tokens[i*7:(i+1)*7]
l1.append((slots[0] - CODE_TOKEN_OFFSET) % 4096)
l2.extend([
(slots[1] - CODE_TOKEN_OFFSET) % 4096,
(slots[4] - CODE_TOKEN_OFFSET) % 4096,
])
l3.extend([
(slots[2] - CODE_TOKEN_OFFSET) % 4096,
(slots[3] - CODE_TOKEN_OFFSET) % 4096,
(slots[5] - CODE_TOKEN_OFFSET) % 4096,
(slots[6] - CODE_TOKEN_OFFSET) % 4096,
])
return [l1, l2, l3]
def main():
# Load the best open source voice AI model
print("\n[1/3] Loading Maya1 model...")
model = AutoModelForCausalLM.from_pretrained(
"maya-research/maya1",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"maya-research/maya1",
trust_remote_code=True
)
print(f"Model loaded: {len(tokenizer)} tokens in vocabulary")
# Load SNAC audio decoder (24kHz)
print("\n[2/3] Loading SNAC audio decoder...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
if torch.cuda.is_available():
snac_model = snac_model.to("cuda")
print("SNAC decoder loaded")
# Design your voice with natural language
description = "Realistic male voice in the 30s age with american accent. Normal pitch, warm timbre, conversational pacing."
text = "Hello! This is Maya1 <laugh_harder> the best open source voice AI model with emotions."
print("\n[3/3] Generating speech...")
print(f"Description: {description}")
print(f"Text: {text}")
# Create prompt with proper formatting
prompt = build_prompt(tokenizer, description, text)
# Debug: Show prompt details
print(f"\nPrompt preview (first 200 chars):")
print(f" {repr(prompt[:200])}")
print(f" Prompt length: {len(prompt)} chars")
# Generate emotional speech
inputs = tokenizer(prompt, return_tensors="pt")
print(f" Input token count: {inputs['input_ids'].shape[1]} tokens")
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=2048, # Increase to let model finish naturally
min_new_tokens=28, # At least 4 SNAC frames
temperature=0.4,
top_p=0.9,
repetition_penalty=1.1, # Prevent loops
do_sample=True,
eos_token_id=CODE_END_TOKEN_ID, # Stop at end of speech token
pad_token_id=tokenizer.pad_token_id,
)
# Extract generated tokens (everything after the input prompt)
generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
print(f"Generated {len(generated_ids)} tokens")
# Debug: Check what tokens we got
print(f" First 20 tokens: {generated_ids[:20]}")
print(f" Last 20 tokens: {generated_ids[-20:]}")
# Check if EOS was generated
if CODE_END_TOKEN_ID in generated_ids:
eos_position = generated_ids.index(CODE_END_TOKEN_ID)
print(f" EOS token found at position {eos_position}/{len(generated_ids)}")
# Extract SNAC audio tokens
snac_tokens = extract_snac_codes(generated_ids)
print(f"Extracted {len(snac_tokens)} SNAC tokens")
# Debug: Analyze token types
snac_count = sum(1 for t in generated_ids if SNAC_MIN_ID <= t <= SNAC_MAX_ID)
other_count = sum(1 for t in generated_ids if t < SNAC_MIN_ID or t > SNAC_MAX_ID)
print(f" SNAC tokens in output: {snac_count}")
print(f" Other tokens in output: {other_count}")
# Check for SOS token
if CODE_START_TOKEN_ID in generated_ids:
sos_pos = generated_ids.index(CODE_START_TOKEN_ID)
print(f" SOS token at position: {sos_pos}")
else:
print(f" No SOS token found in generated output!")
if len(snac_tokens) < 7:
print("Error: Not enough SNAC tokens generated")
return
# Unpack SNAC tokens to 3 hierarchical levels
levels = unpack_snac_from_7(snac_tokens)
frames = len(levels[0])
print(f"Unpacked to {frames} frames")
print(f" L1: {len(levels[0])} codes")
print(f" L2: {len(levels[1])} codes")
print(f" L3: {len(levels[2])} codes")
# Convert to tensors
device = "cuda" if torch.cuda.is_available() else "cpu"
codes_tensor = [
torch.tensor(level, dtype=torch.long, device=device).unsqueeze(0)
for level in levels
]
# Generate final audio with SNAC decoder
print("\n[4/4] Decoding to audio...")
with torch.inference_mode():
z_q = snac_model.quantizer.from_codes(codes_tensor)
audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
# Trim warmup samples (first 2048 samples)
if len(audio) > 2048:
audio = audio[2048:]
duration_sec = len(audio) / 24000
print(f"Audio generated: {len(audio)} samples ({duration_sec:.2f}s)")
# Save your emotional voice output
output_file = "output.wav"
sf.write(output_file, audio, 24000)
print(f"\nVoice generated successfully!")
if __name__ == "__main__":
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment