IMQ.py 5.01 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import os, sys, tqdm, cv2
from scipy.optimize import linear_sum_assignment
from metrics import BatchMetric
import pdb

def match(pred, gt):
    # pred: (n,h,w)
    # gt: (m,h,w)
    n, h, w = pred.shape
    m, h, w = gt.shape
    pred_mask = (pred>0)
    gt_mask = (gt>0)
    # (n,w)
    union = np.logical_or(pred_mask[:,None,:,:], gt_mask[None,:,:,:]).sum(axis=(2,3))
    inter = np.logical_and(pred_mask[:,None,:,:], gt_mask[None,:,:,:]).sum(axis=(2,3))
    iou = inter / (union + 1e-8)
    # matched_idx = np.argmax(iou, axis=0) # m
    # matched_iou = np.max(iou, axis=0) # m
    # return matched_idx, matched_iou
    return iou


def mad(pred, gt):
    pred_mask = (pred>0)
    gt_mask = (gt>0)
    union_mask = np.logical_or(pred_mask, gt_mask)
    error = np.abs(pred-gt) * union_mask.astype(np.float32)
    error = error.sum(axis=(1,2)) / (union_mask.sum(axis=(1,2)) + 1.)
    score = 1 - np.minimum(error,1)
    return score


def similarity(pred, gt):
    metric = BatchMetric('cuda')
    # mask = np.logical_or(pred>0, gt>0) * 128
    mask = np.logical_or(pred>0, gt>0) * 128
    sad, mad, mse, grad, conn = metric.run(pred*255, gt*255, mask=mask, calc_mad=True)
    mad = 1 - np.minimum(mad * 10, 1.0)
    mse = 1 - np.minimum(mse * 10, 1.0)
    grad = 1 - np.minimum(grad * 10, 1.0)
    conn = 1 - np.minimum(conn * 10, 1.0)
    score = [mad.sum(), mse.sum(), grad.sum(), conn.sum()]
    return score


def compute_stats_per_image(pred, gt, thresh_list, func=mad):
    # matched_idx, matched_iou = match(pred, gt)
    tp_list, fp_list, fn_list = [], [], []
    MQ_list = []
    if len(pred)>0 and len(gt)>0:
        iou_matrix = match(pred, gt)
        matched_i, matched_j  = linear_sum_assignment(1-iou_matrix)
        matched_iou = iou_matrix[matched_i, matched_j]
        # score = func(pred[matched_i], gt[matched_j]) * matched_iou
        for thresh in thresh_list:
            tp = (matched_iou>=thresh).sum()
            fp = pred.shape[0] - tp
            fn = gt.shape[0] - tp
            tp_list.append(tp)
            fp_list.append(fp)
            fn_list.append(fn)
            if tp>0:
                tp_idx = np.where(matched_iou>=thresh)
                tp_i, tp_j = matched_i[tp_idx], matched_j[tp_idx]
                score_list = similarity(pred[tp_i], gt[tp_j])
                score_list.append(matched_iou[tp_idx].sum())
                MQ_list.append(score_list)
            else:
                MQ_list.append([0,0,0,0,0])
    elif len(pred) == 0:
        for thresh in thresh_list:
            tp_list.append(0)
            fp_list.append(0)
            fn_list.append(len(gt))
            MQ_list.append([0,0,0,0,0])
    else:
        for thresh in thresh_list:
            tp_list.append(0)
            fp_list.append(len(pred))
            fn_list.append(0)
            MQ_list.append([0,0,0,0,0])
    return tp_list, fp_list, fn_list, MQ_list


def compute_stats(pred_folder, gt_folder, thresh_list):
    n_thresh = len(thresh_list)
    IMQ_list = [] # n_thresh, n_IMQ, n_instances
    _MQ_list = []
    _RQ_list = []
    for i in range(n_thresh):
        IMQ_list.append([0]*5)
        _MQ_list.append([0]*5)
        _RQ_list.append([0]*5)
    TP, FP, FN = [0]*n_thresh, [0]*n_thresh, [0]*n_thresh
    for item in tqdm.tqdm(sorted(os.listdir(gt_folder))):
        if not os.path.exists(os.path.join(pred_folder, item)):
            continue
        pred_images = [cv2.imread(os.path.join(pred_folder, item, im), 0)/255. for im in os.listdir(os.path.join(pred_folder, item))]
        gt_images = [cv2.imread(os.path.join(gt_folder, item, im), 0)/255. for im in os.listdir(os.path.join(gt_folder, item))]
        if len(pred_images)>0:
            pred_items = np.stack(pred_images, axis=0)
        else:
            pred_items = []
        if len(gt_images)>0:
            gt_items = np.stack(gt_images, axis=0)
        else:
            gt_items = []

        tp_list, fp_list, fn_list, MQ_list = compute_stats_per_image(pred_items, gt_items, thresh_list)
        for i in range(0, n_thresh):
            TP[i] += tp_list[i]
            FP[i] += fp_list[i]
            FN[i] += fn_list[i]
            for j in range(len(MQ_list[i])):
                IMQ_list[i][j] += MQ_list[i][j]
                _MQ_list[i][j] += MQ_list[i][j]
    for i in range(0, n_thresh):
        coeff = 1.0 / (TP[i] + 0.5*FP[i] + 0.5*FN[i] + 1e-6)
        for j in range(len(IMQ_list[0])):
            IMQ_list[i][j] = IMQ_list[i][j] * coeff
            _MQ_list[i][j] = _MQ_list[i][j] / float(TP[i])
            _RQ_list[i][j] = coeff * TP[i]
    return IMQ_list, _MQ_list, _RQ_list


if __name__ == "__main__":
    pred_folder = sys.argv[1]
    gt_folder = sys.argv[2]
    #thresh_list = [0.5, 0.75]
    thresh_list = [0.5]
    IMQ_list, MQ_list, RQ_list = compute_stats(pred_folder, gt_folder, thresh_list)
    for IMQ, MQ, RQ, thresh in zip(IMQ_list, MQ_list, RQ_list, thresh_list):
        print("IMQ/MQ/RQ on Threshold = {}".format(thresh))
        for i, name in enumerate(['MAD', 'MSE', 'Grad', 'Conn', 'IoU']):
            print('{} = {}/{}/{}'.format(name, IMQ[i], MQ[i], RQ[i]))