network_mirnet.py 15 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
"""
## Learning Enriched Features for Real Image Restoration and Enhancement
## Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao
## ECCV 2020
## https://arxiv.org/abs/2003.06792
"""


# --- Imports --- #
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
# from pdb import set_trace as stx

# from utils.antialias import Downsample as downsamp



class downsamp(nn.Module):
    def __init__(self, pad_type='reflect', filt_size=3, stride=2, channels=None, pad_off=0):
        super(downsamp, self).__init__()
        self.filt_size = filt_size
        self.pad_off = pad_off
        self.pad_sizes = [int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)), int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2))]
        self.pad_sizes = [pad_size+pad_off for pad_size in self.pad_sizes]
        self.stride = stride
        self.off = int((self.stride-1)/2.)
        self.channels = channels

        # print('Filter size [%i]'%filt_size)
        if(self.filt_size==1):
            a = np.array([1.,])
        elif(self.filt_size==2):
            a = np.array([1., 1.])
        elif(self.filt_size==3):
            a = np.array([1., 2., 1.])
        elif(self.filt_size==4):    
            a = np.array([1., 3., 3., 1.])
        elif(self.filt_size==5):    
            a = np.array([1., 4., 6., 4., 1.])
        elif(self.filt_size==6):    
            a = np.array([1., 5., 10., 10., 5., 1.])
        elif(self.filt_size==7):    
            a = np.array([1., 6., 15., 20., 15., 6., 1.])

        filt = torch.Tensor(a[:,None]*a[None,:])
        filt = filt/torch.sum(filt)
        self.register_buffer('filt', filt[None,None,:,:].repeat((self.channels,1,1,1)))

        self.pad = get_pad_layer(pad_type)(self.pad_sizes)

    def forward(self, inp):
        if(self.filt_size==1):
            if(self.pad_off==0):
                return inp[:,:,::self.stride,::self.stride]    
            else:
                return self.pad(inp)[:,:,::self.stride,::self.stride]
        else:
            return F.conv2d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1])

def get_pad_layer(pad_type):
    if(pad_type in ['refl','reflect']):
        PadLayer = nn.ReflectionPad2d
    elif(pad_type in ['repl','replicate']):
        PadLayer = nn.ReplicationPad2d
    elif(pad_type=='zero'):
        PadLayer = nn.ZeroPad2d
    else:
        print('Pad type [%s] not recognized'%pad_type)
    return PadLayer


##########################################################################

def conv(in_channels, out_channels, kernel_size, bias=False, padding = 1, stride = 1):
    return nn.Conv2d(
        in_channels, out_channels, kernel_size,
        padding=(kernel_size//2), bias=bias, stride = stride)

##########################################################################
##---------- Selective Kernel Feature Fusion (SKFF) ----------
class SKFF(nn.Module):
    def __init__(self, in_channels, height=3,reduction=8,bias=False):
        super(SKFF, self).__init__()
        
        self.height = height
        d = max(int(in_channels/reduction),4)
        
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv_du = nn.Sequential(nn.Conv2d(in_channels, d, 1, padding=0, bias=bias), nn.PReLU())

        self.fcs = nn.ModuleList([])
        for i in range(self.height):
            self.fcs.append(nn.Conv2d(d, in_channels, kernel_size=1, stride=1,bias=bias))
        
        self.softmax = nn.Softmax(dim=1)

    def forward(self, inp_feats):
        batch_size = inp_feats[0].shape[0]
        n_feats =  inp_feats[0].shape[1]
        

        inp_feats = torch.cat(inp_feats, dim=1)
        inp_feats = inp_feats.view(batch_size, self.height, n_feats, inp_feats.shape[2], inp_feats.shape[3])
        
        feats_U = torch.sum(inp_feats, dim=1)
        feats_S = self.avg_pool(feats_U)
        feats_Z = self.conv_du(feats_S)

        attention_vectors = [fc(feats_Z) for fc in self.fcs]
        attention_vectors = torch.cat(attention_vectors, dim=1)
        attention_vectors = attention_vectors.view(batch_size, self.height, n_feats, 1, 1)
        # stx()
        attention_vectors = self.softmax(attention_vectors)
        
        feats_V = torch.sum(inp_feats*attention_vectors, dim=1)
        
        return feats_V        


##########################################################################
##---------- Spatial Attention ----------
class BasicConv(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=False, bias=False):
        super(BasicConv, self).__init__()
        self.out_channels = out_planes
        self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
        self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None
        self.relu = nn.ReLU() if relu else None

    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x

class ChannelPool(nn.Module):
    def forward(self, x):
        return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 )

class spatial_attn_layer(nn.Module):
    def __init__(self, kernel_size=5):
        super(spatial_attn_layer, self).__init__()
        self.compress = ChannelPool()
        self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False)
    def forward(self, x):
        # import pdb;pdb.set_trace()
        x_compress = self.compress(x)
        x_out = self.spatial(x_compress)
        scale = torch.sigmoid(x_out) # broadcasting
        return x * scale


##########################################################################
## ------ Channel Attention --------------
class ca_layer(nn.Module):
    def __init__(self, channel, reduction=8, bias=True):
        super(ca_layer, self).__init__()
        # global average pooling: feature --> point
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        # feature channel downscale and upscale --> channel weight
        self.conv_du = nn.Sequential(
                nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=bias),
                nn.ReLU(inplace=True),
                nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=bias),
                nn.Sigmoid()
        )

    def forward(self, x):
        y = self.avg_pool(x)
        y = self.conv_du(y)
        return x * y

##########################################################################
##---------- Dual Attention Unit (DAU) ----------
class DAU(nn.Module):
    def __init__(
        self, n_feat, kernel_size=3, reduction=8,
        bias=False, bn=False, act=nn.PReLU(), res_scale=1):

        super(DAU, self).__init__()
        modules_body = [conv(n_feat, n_feat, kernel_size, bias=bias), act, conv(n_feat, n_feat, kernel_size, bias=bias)]
        self.body = nn.Sequential(*modules_body)
        
        ## Spatial Attention
        self.SA = spatial_attn_layer()

        ## Channel Attention        
        self.CA = ca_layer(n_feat,reduction, bias=bias)

        self.conv1x1 = nn.Conv2d(n_feat*2, n_feat, kernel_size=1, bias=bias)

    def forward(self, x):
        res = self.body(x)
        sa_branch = self.SA(res)
        ca_branch = self.CA(res)
        res = torch.cat([sa_branch, ca_branch], dim=1)
        res = self.conv1x1(res)
        res += x
        return res


##########################################################################
##---------- Resizing Modules ----------    
class ResidualDownSample(nn.Module):
    def __init__(self, in_channels, bias=False):
        super(ResidualDownSample, self).__init__()

        self.top = nn.Sequential(nn.Conv2d(in_channels, in_channels,   1, stride=1, padding=0, bias=bias),
                                nn.PReLU(),
                                nn.Conv2d(in_channels, in_channels, 3, stride=1, padding=1, bias=bias),
                                nn.PReLU(),
                                downsamp(channels=in_channels,filt_size=3,stride=2),
                                nn.Conv2d(in_channels, in_channels*2, 1, stride=1, padding=0, bias=bias))

        self.bot = nn.Sequential(downsamp(channels=in_channels,filt_size=3,stride=2),
                                nn.Conv2d(in_channels, in_channels*2, 1, stride=1, padding=0, bias=bias))

    def forward(self, x):
        top = self.top(x)
        bot = self.bot(x)
        out = top+bot
        return out

class DownSample(nn.Module):
    def __init__(self, in_channels, scale_factor, stride=2, kernel_size=3):
        super(DownSample, self).__init__()
        self.scale_factor = int(np.log2(scale_factor))

        modules_body = []
        for i in range(self.scale_factor):
            modules_body.append(ResidualDownSample(in_channels))
            in_channels = int(in_channels * stride)
        
        self.body = nn.Sequential(*modules_body)

    def forward(self, x):
        x = self.body(x)
        return x

class ResidualUpSample(nn.Module):
    def __init__(self, in_channels, bias=False):
        super(ResidualUpSample, self).__init__()

        self.top = nn.Sequential(nn.Conv2d(in_channels, in_channels,   1, stride=1, padding=0, bias=bias),
                                nn.PReLU(),
                                nn.ConvTranspose2d(in_channels, in_channels, 3, stride=2, padding=1, output_padding=1,bias=bias),
                                nn.PReLU(),
                                nn.Conv2d(in_channels, in_channels//2, 1, stride=1, padding=0, bias=bias))

        self.bot = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=bias),
                                nn.Conv2d(in_channels, in_channels//2, 1, stride=1, padding=0, bias=bias))

    def forward(self, x):
        top = self.top(x)
        bot = self.bot(x)
        out = top+bot
        return out

class UpSample(nn.Module):
    def __init__(self, in_channels, scale_factor, stride=2, kernel_size=3):
        super(UpSample, self).__init__()
        self.scale_factor = int(np.log2(scale_factor))

        modules_body = []
        for i in range(self.scale_factor):
            modules_body.append(ResidualUpSample(in_channels))
            in_channels = int(in_channels // stride)
        
        self.body = nn.Sequential(*modules_body)

    def forward(self, x):
        x = self.body(x)
        return x


##########################################################################
##---------- Multi-Scale Resiudal Block (MSRB) ----------
class MSRB(nn.Module):
    def __init__(self, n_feat, height, width, stride, bias):
        super(MSRB, self).__init__()

        self.n_feat, self.height, self.width = n_feat, height, width
        self.blocks = nn.ModuleList([nn.ModuleList([DAU(int(n_feat*stride**i))]*width) for i in range(height)])

        INDEX = np.arange(0,width, 2)
        FEATS = [int((stride**i)*n_feat) for i in range(height)]
        SCALE = [2**i for i in range(1,height)]

        self.last_up   = nn.ModuleDict()
        for i in range(1,height):
            self.last_up.update({f'{i}': UpSample(int(n_feat*stride**i),2**i,stride)})

        self.down = nn.ModuleDict()
        self.up   = nn.ModuleDict()

        i=0
        SCALE.reverse()
        for feat in FEATS:
            for scale in SCALE[i:]:
                self.down.update({f'{feat}_{scale}': DownSample(feat,scale,stride)})
            i+=1

        i=0
        FEATS.reverse()
        for feat in FEATS:
            for scale in SCALE[i:]:                
                self.up.update({f'{feat}_{scale}': UpSample(feat,scale,stride)})
            i+=1

        self.conv_out = nn.Conv2d(n_feat, n_feat, kernel_size=3, padding=1, bias=bias)

        self.selective_kernel = nn.ModuleList([SKFF(n_feat*stride**i, height) for i in range(height)])
        


    def forward(self, x):
        inp = x.clone()
        #col 1 only
        blocks_out = []
        for j in range(self.height):
            if j==0:
                inp = self.blocks[j][0](inp)
            else:
                inp = self.blocks[j][0](self.down[f'{inp.size(1)}_{2}'](inp))
            blocks_out.append(inp)

        #rest of grid
        for i in range(1,self.width):
            #Mesh
            # Replace condition(i%2!=0) with True(Mesh) or False(Plain)
            # if i%2!=0:
            if True:
                tmp=[]
                for j in range(self.height):
                    TENSOR = []
                    nfeats = (2**j)*self.n_feat
                    for k in range(self.height):
                        TENSOR.append(self.select_up_down(blocks_out[k], j, k)) 

                    selective_kernel_fusion = self.selective_kernel[j](TENSOR)
                    tmp.append(selective_kernel_fusion)
            #Plain
            else:
                tmp = blocks_out
            #Forward through either mesh or plain
            for j in range(self.height):
                blocks_out[j] = self.blocks[j][i](tmp[j])

        #Sum after grid
        out=[]
        for k in range(self.height):
            out.append(self.select_last_up(blocks_out[k], k))  

        out = self.selective_kernel[0](out)

        out = self.conv_out(out)
        out = out + x

        return out

    def select_up_down(self, tensor, j, k):
        if j==k:
            return tensor
        else:
            diff = 2 ** np.abs(j-k)
            if j<k:
                return self.up[f'{tensor.size(1)}_{diff}'](tensor)
            else:
                return self.down[f'{tensor.size(1)}_{diff}'](tensor)


    def select_last_up(self, tensor, k):
        if k==0:
            return tensor
        else:
            return self.last_up[f'{k}'](tensor)


##########################################################################
##---------- Recursive Residual Group (RRG) ----------
class RRG(nn.Module):
    def __init__(self, n_feat, n_MSRB, height, width, stride, bias=False):
        super(RRG, self).__init__()
        modules_body = [MSRB(n_feat, height, width, stride, bias) for _ in range(n_MSRB)]
        modules_body.append(conv(n_feat, n_feat, kernel_size=3))
        self.body = nn.Sequential(*modules_body)

    def forward(self, x):
        res = self.body(x)
        res += x
        return res


##########################################################################
##---------- MIRNet  -----------------------
class MIRNet(nn.Module):
    def __init__(self, in_channels=3, out_channels=3, n_feat=64, kernel_size=3, stride=2, n_RRG=3, n_MSRB=2, height=3, width=2, bias=False):
        super(MIRNet, self).__init__()

        self.conv_in = nn.Conv2d(in_channels, n_feat, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=bias)

        modules_body = [RRG(n_feat, n_MSRB, height, width, stride, bias) for _ in range(n_RRG)]
        self.body = nn.Sequential(*modules_body)

        self.conv_out = nn.Conv2d(n_feat, out_channels, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=bias)

    def forward(self, x):
        h = self.conv_in(x)
        h = self.body(h)
        h = self.conv_out(h)
        h += x
        return