"src/targets/vscode:/vscode.git/clone" did not exist on "dc9c9784dd7aa2917e6d9ed10a226b041defa256"
tool.py 6.76 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

import numpy as np
from sklearn.preprocessing import scale
import ctypes
import joblib
import statsmodels.tsa.api as smt
import random
import json

def label_one_left(labels):
    ret = []
    for lab in labels:
        if lab != 1:
            ret.append(0)
        else:
            ret.append(1)
    return ret

def print_label_sta(labels):
    sta = {}
    n = 0
    for lab in labels:
        if lab not in sta:
            sta[lab] = 1
        else:
            sta[lab] += 1
        n += 1
    for xkey in sta:
        print("lab:" + str(xkey) + ", n=" + str(sta[xkey]) + ", possession:" + str(sta[xkey]/n))

def load_model(modelfile):
    return joblib.load(modelfile)

def save_json(entity, path):
    f = open(path, 'w')
    json.dump(entity, f)
    f.close()

def load_json(path):
    f = open(path, 'r')
    ret = json.load(f)
    f.close()
    return ret

def save_joblib(entity, path):
    f = open(path, 'wb')
    joblib.dump(entity, f)
    f.close()

def load_joblib(path):
    f = open(path, 'rb')
    ret = joblib.load(f)
    f.close()
    return ret 

def quality_poor(seq, nrepeat=7):
    curNum = -1
    sameInRow = 1
    for x in seq:
        if x != curNum:
            sameInRow = 1
            curNum = x
        else:
            sameInRow = sameInRow + 1
        
        if sameInRow >= nrepeat:
            return True

    return False

def scale_by(featsets, scale_factors):
    std_feats = []
    npfeats = np.array(featsets)
    np_sf = np.array(scale_factors)
    for one in npfeats:
        featbuf = (one - np_sf[0]) / np_sf[1]
        std_feats.append(featbuf)
    return std_feats

def decrease100(rris):
    pnn100 = 0
    for i in range(1, len(rris)):
        if (rris[i] - rris[i - 1]) < 100:
            pnn100 += 1
    return pnn100 / (len(rris) - 1)

def serial_dscp(ser):
    ret = []
    #mean
    ret.append(np.mean(ser))#0,1
    #max
    smax = np.max(ser)
    ret.append(float(smax))#1,2
    #min
    smin = np.min(ser)
    ret.append(float(smin))#2,3
    #dist
    ret.append(float(smax - smin))#3,4
    #std
    ret.append(np.std(ser))#4,5
    #median
    ret.append(np.median(ser))#5,6

    return ret

def get_z_serial(ser, avg, std, maskval=None):
    ret = []
    for i in range(0, len(ser)):
        if ser[i] != maskval:
            ret.append((ser[i] - avg) / std)
        else:
            ret.append(maskval)

    return ret

def auto_corr_ser(dat, nlag, maskval=-999999):
    subsec = []
    begmasklen = 0
    for one in dat:
        if one != maskval:
            subsec.append(one)
        else:
            begmasklen += 1
            
    autoreg = smt.stattools.acf(subsec, nlags=nlag - begmasklen)
    ret = [maskval] * begmasklen
    ret.extend(autoreg)
    return ret

def adj_diff(dat):
    ret = []
    for i in range(1, len(dat)):
        ret.append(dat[i] - dat[i - 1])
    return ret

def diff_rms(dat):
    diff = []
    for i in range(1, len(dat)):
        diff.append((dat[i] - dat[i - 1])**2)
    dsum = 0
    for j in range(0, len(diff)):
        dsum += diff[j]
    dsum = dsum / len(dat)
    return (dsum ** 0.5)

def arrs_xtd_paras(arrs):
    long_arr = []
    for arr in arrs:
        long_arr.extend(arr)
    return np.mean(long_arr), np.std(long_arr)

def full_distance(rris):
    ret = 0
    for i in range(1, len(rris)):
        ret += np.abs(rris[i] - rris[i - 1])
    return ret

def scale(mat):
    avgs = []
    stds = []
    results = []
    ncase = len(mat)
    nfeat = len(mat[0])
    for j in range(0, nfeat):
        vals = []
        for i in range(0, ncase):
            vals.append(mat[i][j])
        avgs.append(np.mean(vals))
        xstd = np.std(vals)
        if xstd == 0:
            xstd = 1
        stds.append(xstd)
    
    for r in range(0, ncase):
        row = []
        for c in range(0, nfeat):
            row.append((mat[r][c] - avgs[c]) / stds[c])
        results.append(row)
    return results, avgs, stds

#tar high not included
def binarilize(tar_low, tar_high, dat):
    ret = []
    for one in dat:
        if tar_low <= one < tar_high:
            ret.append(1)
        else:
            ret.append(0)
    return ret

def multiple_split(feats, labs2d, test_size):
    xlen = len(feats)
    idx = list(range(0, xlen))
    ntest = int(xlen * test_size)
    test_idx = random.sample(idx, ntest)
    ny = len(labs2d)
    
    X = []
    Xt = []
    y = []
    yt = []
    
    for i in range(0, ny):
        y.append([])
        yt.append([])
    
    for i in range(0, xlen):
        if i in test_idx:
            Xt.append(feats[i])
            for j in range(0, ny):
                yt[j].append(labs2d[j][i])
        else:
            X.append(feats[i])
            for k in range(0, ny):
                y[k].append(labs2d[k][i])
                
    return X, Xt, y, yt

def linear_soomth(src, mask=-1):
    for i in range(0, len(src)):
        if src[i] == mask:
            begi=-1
            endi=-1
            
            #search backward
            for j in range(i-1, -1, -1):
                if src[j] != mask:
                    begi = j
                    break

            #search forward
            for k in range(i+1, len(src), 1):
                if src[k] != mask:
                    endi = k
                    break
            
            if begi != mask and endi != mask:
                full_stride = endi - begi
                loc_stride = i - begi
                stepval = (src[endi] - src[begi]) / full_stride
                src[i] = src[begi] + (stepval * loc_stride)
            elif begi == mask and endi != mask:
                src[i] = src[endi]
            elif begi != mask and endi == mask:
                src[i] = src[begi]
    return src
        

def gen_rrix211():
    x = [730,720,790,810,760,690,710,660,670,690,720,750,\
        750,800,820,760,710,730,780,750,760,790,1000,830,860,880,880,\
        820,850,850,880,830,860,880,840,830,890,910,860,880,890,810,\
        830,830,810,820,860,820,850,880,820,870,900,850,890,920,890,\
        910,920,870,940,950,880,920,930,900,940,950,930,950,980,970,\
        980,950,920,950,960,890,910,940,900,920,910,870,880,890,860,\
        860,860,830,820,860,830,880,910,910,870,930,940,900,940,970,\
        910,890,910,730,720,790,810,760,690,710,660,670,690,720,750,\
        750,800,820,760,710,730,780,750,760,790,860,830,860,880,880,\
        820,850,850,880,830,860,880,840,830,890,910,860,880,890,810,\
        830,830,810,820,860,820,850,880,820,870,900,850,890,920,890,\
        910,920,870,940,950,880,920,930,900,940,950,930,950,980,970,\
        980,950,920,950,960,890,910,940,900,920,910,870,880,890,860,\
        860,860,830,820,860,830,880,910,910,870,930,940,1200,940,970,\
        910,890,910,1000]

    return x

if __name__ == "__main__":
    # print(len(gen_rrix211()))
    x = [-1, 800, 900, -1, -1, 1200, -1, 1500, -1]
    xsmooth = linear_soomth(x)
    print(xsmooth)
    z = 0