hour_dataset.py 11.2 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from torch.utils.data import Dataset
import sys
import dbop
from sklearn.model_selection import train_test_split
import numpy as np
from tool import load_joblib, save_joblib, print_label_sta, linear_soomth
import torch
#import torch_mlu
# import torch_mlu
import re
from torch.nn.utils.rnn import pad_packed_sequence, pad_sequence, pack_padded_sequence
import datetime
import copy
import random

def check_abnormal_in_mat(xmat, desiresize=[697,3,16,8]):
    for x in range(0, len(xmat)):
        if len(xmat[x]) != desiresize[1]:
            print("%d" % x)
        for y in range(0, len(xmat[x])):
            if len(xmat[x][y]) != desiresize[2]:
                print("%d, %d" % (x, y))
            for z in range(0, len(xmat[x][y])):
                if len(xmat[x][y][z]) != desiresize[3]:
                    print("%d, %d, %d" % (x, y, z))

class HourDataset(Dataset):
    def __init__(self, least_hourlen, random_seed):
        self.mode = None
        self.least_hourlen = least_hourlen
        self.X_train = None
        self.X_test = None
        self.y_train = None
        self.y_test = None
        self.spots_aday = 16
        self.days_2_include = 3
        self.person_day_mode = False
        self.random_seed = random_seed

    def _case_pass(self, rec):
        used_time = int(re.findall("\d+", rec['scale_usd_tm'])[0])
        if len(rec['pred_iars']) > self.least_hourlen and used_time > 250:
            return True
        else:
            return False

    def _putin_timeslots(self, rec, begdate, enddate):
        gap_days = (enddate - begdate).days

        vec = []
        for i in range(0, gap_days):
            for x in range(0, self.spots_aday):#16 hours in a day
                vec.append([])

        for i in range(0, len(rec['begs'])):
            cur_time = datetime.datetime.fromtimestamp(rec['begs'][i])
            # print("beg:%s, this:%s, end:%s" % (str(begdate), str(cur_time), str(enddate)))
            if begdate < cur_time < enddate:
                idx = ((cur_time - begdate).days * self.spots_aday) + (cur_time.hour - 8)

                if rec['pred_ival'][i] != None:
                    vec[idx].extend(rec['pred_ival'][i])#3
                    vec[idx].extend(rec['pred_pval'][i])#3
                else:
                    vec[idx].extend([None]*3)
                    vec[idx].extend([None]*3)
                vec[idx].append(rec['pred_iars'][i])#1
                vec[idx].append(rec['pred_pars'][i])#1

        return vec

    def _get_lab(self, rec):
        score = rec['phq']
        if score > 15:
        # if score >= 10:
            return 1
        elif score < 5:
            return 0
        else:
            return -4
        # score = rec['dass'][0]
        # if score >= 21:
        #     return 1
        # elif score <= 9:
        #     return 0
        # else:
        #     return -4

    def get_type_a_ftlab(self, rec, day_range):
        lab = self._get_lab(rec)
        if lab != -4 and self._case_pass(rec):
            scale_day = datetime.datetime.strptime(rec['rating_daystr'], "%Y%m%d")
            scale_day = datetime.datetime(scale_day.year, scale_day.month, scale_day.day, 0,0,0)
            beg_day = scale_day + datetime.timedelta(days=(-1 * day_range))
            beg_day = datetime.datetime(beg_day.year, beg_day.month, beg_day.day, 0,0,0)

            person_vec = self._putin_timeslots(rec, beg_day, scale_day)
            
            return person_vec, lab, rec['uid'], beg_day, scale_day
        else: 
            return None, None, None, None, None

    def under_sample(self, X, y):
        # npX = np.array(X)
        # npy = np.array(y)
        # origin_shape = npX.shape
        # npX = npX.reshape(origin_shape[0], origin_shape[1]*origin_shape[2]*origin_shape[3])
        # feats, labs = RandomUnderSampler().fit_resample(npX, npy)
        # feats = feats.reshape(-1, origin_shape[1]*origin_shape[2], origin_shape[3])

        sta_dict = {}
        indices_dict = {}
        for i in range(0, len(y)):
            if y[i] not in sta_dict:
                sta_dict[y[i]] = 1
                indices_dict[y[i]] = [i]
            else:
                sta_dict[y[i]] += 1
                indices_dict[y[i]].append(i)

        n_sample = min(sta_dict.values())
        balanced_indeces_collection = []
        random.seed(self.random_seed)
        for one in indices_dict:
            balanced_indeces_collection.extend(random.sample(indices_dict[one], n_sample))

        feats = []
        labs = []
        for idx in balanced_indeces_collection:
            feats.append(X[balanced_indeces_collection[idx]])
            labs.append(y[balanced_indeces_collection[idx]])

        return feats, labs

    def _check_day_buf(self, daybuf):
        n_invalid = 0
        for hour in daybuf:
            if (len(hour) == 0) or (hour.count(None) > 0):
                n_invalid += 1
        return n_invalid

    def _feats_back_selection(\
        self, allfeats, alllabs, alluids, miss_tole=6):
        ret_feats = []
        ret_labs = []
        ret_uids = []
        #person, hour, feat
        for i in range(0, len(allfeats)):#person
            person_buf = []
            nday = 0
            nrec = 0
            daybuf = []
            for j in range(len(allfeats[i])-1, -1, -1):#days backward
                daybuf.append(allfeats[i][j])
                nrec += 1
                if nrec % self.spots_aday == 0:#went through a day
                    n_invalid = self._check_day_buf(daybuf)
                    if n_invalid < miss_tole:
                        person_buf.append(daybuf)
                        nday += 1
                        if nday >= self.days_2_include:
                            break
                    daybuf = []
            if nday >= self.days_2_include:
                ret_feats.append(person_buf)
                ret_labs.append(alllabs[i])
                ret_uids.append(alluids[i])
        return ret_feats, ret_labs, ret_uids

    def _fill_empty_with_mask(self, day_data, ftsetlen=8, mask=-1):
        for i in range(0, len(day_data)):#hour
            if len(day_data[i]) == 0:
                day_data[i] = [mask] * ftsetlen
            for j in range(0, len(day_data[i])):#ft
                if day_data[i][j] == None:
                    day_data[i][j] = -1

    def load(self, split=True):
        print('begins to load!')
        day_range = 30
        src_coll = dbop.GetMongoCollection('FLP', 'nj_2021_hour')
        recs = src_coll.find({})
        
        allfeats = []
        alllabs = []
        alluids = []
        all_dayrange = []

        for rec in recs:
            feat, lab, uid, begday, endday = self.get_type_a_ftlab(rec, day_range)
            if feat != None:
                allfeats.append(feat)
                alllabs.append(lab)
                alluids.append(uid)
                all_dayrange.append([begday, endday])
        print_label_sta(alllabs)
        print("data loaded!")
        recs.close()

        fbs_feats, fbs_labs, fbs_uids =\
            self._feats_back_selection(allfeats, alllabs, alluids)
        print('After backward selection')
        print_label_sta(fbs_labs)
        print("feat shape: " + str(np.array(fbs_feats, dtype=object).shape))

        #fill empty with mask
        for p1 in fbs_feats:
            for p1day1 in p1:
                self._fill_empty_with_mask(p1day1)

        #linear smooth
        for i in range(0, len(fbs_feats)):#i=person
            for j in range(0, len(fbs_feats[i])):#j=day
                buf = copy.deepcopy(fbs_feats[i][j])
                buf_t = np.array(buf).T.tolist()
                for k in range(0, len(buf_t)):
                    buf_t[k] = linear_soomth(buf_t[k])
                fbs_feats[i][j] = np.array(buf_t).T.tolist()

        # check_abnormal_in_mat(fbs_feats)

        us_feats, us_labs = self.under_sample(fbs_feats, fbs_labs)
        print('After under sample')
        print_label_sta(us_labs)

        if split:
            self.X_train, self.X_test, self.y_train, self.y_test =\
                train_test_split(us_feats, us_labs, test_size=0.3, shuffle=False)
            print("Dataset: train: %s, test: %s" % (str(np.array(self.X_train).shape), str(np.array(self.X_test).shape)))
        
        if self.person_day_mode:            
            new_y_train = []
            for oneytr in self.y_train:
                new_y_train.extend([oneytr] * self.days_2_include)
            self.y_train = new_y_train
            
            new_y_test = []
            for oneyte in self.y_test:
                new_y_test.extend([oneyte] * self.days_2_include)
            self.y_test = new_y_test

            self.X_train = np.array(self.X_train)
            self.X_train = self.X_train.reshape(-1, self.spots_aday, self.get_input_size())

            self.X_test = np.array(self.X_test)
            self.X_test = self.X_test.reshape(-1, self.spots_aday, self.get_input_size())

            print("p_d_mode: train: %d-%d, test: %d-%d" %\
                (len(self.X_train), len(self.y_train), len(self.X_test), len(self.y_test)))

    def get_input_size(self):
        shape = self.X_train.shape
        return shape[len(shape)-1]

    def get_time_step(self):
        shape = self.X_train.shape
        return shape[len(shape)-2]

    def savefile(self, path):
        save_dict = {'X_train':self.X_train, 'X_test':self.X_test,\
            'y_train':self.y_train, 'y_test':self.y_test}
        save_joblib(save_dict, path)
    

    def loadfile(self, path):
        load_dict = load_joblib(path)

  
        x_test = load_dict['X_test']
        y_test = load_dict['y_test']

        X_train=load_dict['X_train']
        y_train= load_dict['y_train']

        self.X_train = np.vstack((X_train, X_train, X_train, X_train, X_train, X_train, X_train, X_train, X_train, X_train,X_train, X_train, X_train, X_train, X_train, X_train, X_train, X_train, X_train, X_train))
        self.y_train = np.hstack((y_train, y_train, y_train, y_train, y_train, y_train, y_train, y_train, y_train, y_train,y_train, y_train, y_train, y_train, y_train, y_train, y_train, y_train, y_train, y_train))
        
        # self.X_train=X_train
        # self.y_train=y_train
        self.X_test = x_test
        self.y_test =y_test

        
        print ("train shape:" + str(np.array(self.X_train).shape))

    def set_mode(self, mode):
        if mode == "train":
            self.mode = "train"
        elif mode == "test":
            self.mode = "test"

    def __getitem__(self, index):
        ftensor = None
        ltensor = None

        if self.mode == "train":
            npfeat = np.array(self.X_train[index], dtype=np.float32)
            ftensor = torch.from_numpy(npfeat).to(torch.float32)
            nplab = np.array(self.y_train[index])
            ltensor = torch.from_numpy(nplab).to(torch.int64)
        elif self.mode == "test":
            npfeat = np.array(self.X_test[index])
            ftensor = torch.from_numpy(npfeat).to(torch.float32)
            nplab = np.array(self.y_test[index])
            ltensor = torch.from_numpy(nplab).to(torch.int64)

        return ftensor, ltensor

    def __len__(self):
        if self.mode == "train":
            return len(self.X_train)
        elif self.mode == "test":
            return len(self.X_test)

if __name__ == "__main__":
    hd = HourDataset(100)
    hd.load()
    hd.savefile('dat_3day_pcase_miss3_2')