driver.py 8.91 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from hour_dataset import HourDataset
from lstm import LSTMSimple
import torch
from torch import dropout, nn
import numpy as np
import sys
from fitlog import FitLog
from torch.utils.data import DataLoader
import os
import torch.distributed
from sklearn.metrics import accuracy_score
# from metric import MetricCollector


class LSTMDriverHour():

    def __init__(self, local_rank):
        # self.epochs = 20000
        self.epochs = 2000
        self.batch_size = 156
        self.hidden_size = 2048
        self.nlayer = 2
        self.n_class = 2
        self.lr = 0.0001
        self.early_stop_thresh = 0.001
        self.early_stop_nreach_limit = 10

        self.dataset = None
        self.model = None
        self.criterion = None
        self.optimizer = None
        self.loader = None
        self.device = None

        self.local_rank = local_rank

    def __get_description(self):
        ret = {'epochs': self.epochs, \
               'batch_size:': self.batch_size, \
               'hidden_size': self.hidden_size, \
               'nlayer': self.nlayer, \
               'n_class': self.n_class, \
               'lr': self.lr, \
               'step_size': self.dataset.get_time_step(), \
               'input_size': self.dataset.get_input_size()}
        return ret

    def load(self, path=None):
        self.dataset = HourDataset(100, random_seed=1)
        if path == None:
            self.dataset.load()
        else:
            self.dataset.loadfile(path)

    def __prepare_for_fit(self):
        self.device = torch.device('cuda', self.local_rank)
        #self.device = torch.device('cuda', 0)

        self.model = LSTMSimple(self.dataset.get_input_size(), self.hidden_size, self.nlayer, self.n_class, self.device)

        self.model.to(self.device)
        self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[self.local_rank],find_unused_parameters=True)

        self.criterion = nn.CrossEntropyLoss()
        self.optimizer = torch.optim.Adam(self.model.parameters(), self.lr)
        # self.optimizer = torch.optim.SGD(self.model.parameters(), self.lr)
    
    def get_device(self):
        device_mlu = None
        device_gpu = None
        try:
            # device_mlu = torch.device('mlu')
            device_gpu = torch.device('cuda')
        except Exception as err:
            print(err)
        if device_mlu:
            self.fitlog.append('mlu', True, True)
            return device_mlu
        elif device_gpu:
            self.fitlog.append('cuda', True, True)
            return device_gpu
        else:
            self.fitlog.append('cpu', True, True)
            return torch.device('cpu')

    def fit(self):
        if self.dataset == None:
            print('no data was loaded')
            return None

        self.__prepare_for_fit()
        if self.local_rank == 0:
            fitlog = FitLog(folderpath='logs/')
            fitlog.append(str(self.__get_description()), with_time=True)
        print(self.__get_description())

        self.dataset.set_mode('train')

        sampler = torch.utils.data.distributed.DistributedSampler(self.dataset)
        self.loader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, sampler=sampler,
                                                  shuffle=False)
        # self.loader = DataLoader(self.dataset, batch_size=self.batch_size, shuffle=True)
        nbatch = len(self.loader)
        print('batch:', nbatch)

        lowest_loss = 99999999
        lowest_loss_at = -1
        early_stop_nreach = 0
        best_acc = 0
        best_acc_at = -1
        import time


        dt = [0.0, 0.0, 0.0]
        ts = time.time()
        # 如果是训练单个epoch,也可以移到下一层循环内
        best_acc=0
        for epoch in range(self.epochs):
            self.dataset.set_mode('train')
            self.model.train()
            t0 = time.time()
            if self.local_rank == 0:
                time_start = time.time()
            for i, (feats, labs) in enumerate(self.loader):
                self.optimizer.zero_grad()
                feats = feats.reshape(-1, self.dataset.get_time_step(), \
                                      self.dataset.get_input_size())
                feats = feats.to(self.device)
                labs = labs.to(self.device)
                outputs = self.model(feats)
                loss = self.criterion(outputs, labs)
                loss.backward()
                self.optimizer.step()
            torch.cuda.synchronize()
            if self.local_rank == 0:
                print('e2e time. {}s'.format((time.time() - time_start) / len(self.loader)))
                
                t1 = time.time()
                dt[0] += t1 - t0

                cur_acc =self._validate2()
                if cur_acc>best_acc:
                    best_acc=cur_acc
                acc_str='Best_acc: {:.4f}'.format(best_acc)
                print(acc_str)
                fitlog.append(acc_str, with_time=True, change_line=True)
            # print(f'Pre Epoch. ({ self.local_rank} {t1-t0:.5f}s)')

            t2 = time.time()
            if lowest_loss > loss.item():
                lowest_loss = loss.item()
                lowest_loss_at = epoch + 1
            # print(f'Loss. ({time.time()-t2:.5f}s)')

            if i + 1 == nbatch and self.local_rank == 0:
                ptstr = 'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Best: {:.4f}, Best at: {}'.format( \
                    epoch + 1, self.epochs, i + 1, nbatch, loss.item(), lowest_loss, lowest_loss_at)
                print(ptstr)
                fitlog.append(ptstr, with_time=True, change_line=True)
              
                
                # acc_list.append(acc)
                # val_loss_list.append(val_loss.cpu().numpy())
                # acc1=np.mean(acc_list)
                # val_loss1=np.mean(val_loss_list)
                # print("Epoch [{}/{}],acc:{},val_loss:{}".format(epoch + 1, self.epochs,str(acc1), str(val_loss1)),with_time=True, change_line=True)
                # fitlog.append("acc:{},val_loss:{}".format(str(acc1), str(val_loss1)),with_time=True, change_line=True)
                if loss.item() < self.early_stop_thresh:
                    early_stop_nreach += 1
                else:
                    early_stop_nreach = 0
                # prof.step()
            t3 = time.time()
            dt[1] += t3 - t2
            t4 = time.time()
            dt[2] += t4 - t3

            # ptstr, acc, val_loss=self.validate()
            # fitlog.append(ptstr+",acc:{},val_loss:{}".format(str(acc), str(val_loss)),with_time=True, change_line=True)

            # if early_stop_nreach >= self.early_stop_nreach_limit:
            #     break
        if self.local_rank == 0:
            fitlog.append(f'Done {self.epochs} Epoch. ({time.time() - ts:.5f}s)', with_time=True, change_line=True)
            fitlog.append("Train: {}s, Log: {}s Val: {}s".format(dt[0], dt[1], dt[2]), with_time=True, change_line=True)
            fitlog.close()
        print(f'Done {self.epochs} Epoch. ({time.time() - ts:.5f}s)')
        print("Train: {}s, Log: {}s Val: {}s".format(dt[0], dt[1], dt[2]))


   
    
    def _validate2(self):
        self.model.eval()
        self.dataset.set_mode('test')
        all_pred = []
        all_tar = []
        accs = []
        all_loss = []

        with torch.no_grad():
            for i, (ft, labs) in enumerate(self.loader):
                ft, labs = ft.to(self.device), labs.to(self.device)
                output = self.model(ft)
                loss = self.criterion(output, labs)
                preds = torch.argmax(output, dim=1).cpu().numpy().tolist()
                all_pred.extend(preds)
                all_tar.extend(labs.cpu().numpy().tolist())
                accs.append(accuracy_score(all_tar, all_pred))
                all_loss.append(loss.item())
                # if i % 100 == 0:
                #     print('validating @ batch {}'.format(i))

                # if g_dubug:
                #     break
        # ptstr = "Validation ACC: %.4f, loss: %.4f" % (np.mean(accs), np.mean(all_loss))
        
        # self.dataset.set_mode('train')
        return np.mean(accs)
        # return np.mean(accs), np.mean(all_loss),np.std(all_loss), all_pred, all_tar
        


def init_ddp(visiable_devices='0,1,2,3,4,5,6,7,8'):
    if torch.cuda.device_count() > 1:
        os.environ['HIP_VISIBLE_DEVICES'] = visiable_devices
        local_rank = int(os.environ["LOCAL_RANK"])
        print("local_rank:" + str(local_rank))
        #torch.distributed.init_process_group(backend='nccl', init_method='tcp://localhost:23456', rank=0, world_size=1)
        torch.distributed.init_process_group(backend="nccl")

        # local_rank = torch.distributed.get_rank()
        torch.cuda.set_device(local_rank)
        # device = torch.device("cuda", args.local_rank)
        return local_rank
    else:
        return None


if __name__ == "__main__":
    local_rank = init_ddp()
    driver = LSTMDriverHour(local_rank=local_rank)
    driver.load('dat_3day_pcase')
    driver.fit()