"vscode:/vscode.git/clone" did not exist on "dff0ab92eb62171f0941f4d226094c818e02f7b3"
test.py 2.29 KB
Newer Older
liuhy's avatar
liuhy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
import argparse
import cv2
import torch
import numpy as np
from lprnet import build_lprnet
from load_data import CHARS


def validation(args):
    model = build_lprnet(len(CHARS))
    model.load_state_dict(torch.load(args.model, map_location=args.device))
    model.to(args.device)

liuhy's avatar
liuhy committed
14
    img = cv2.imread(args.img)
liuhy's avatar
liuhy committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    height, width, _ = img.shape
    if height != 24 or width != 94:
        img = cv2.resize(img, (94, 24))
    img = img.astype('float32')
    img -= 127.5
    img *= 0.0078125
    img = np.transpose(img, (2, 0, 1))

    with torch.no_grad():
        img = torch.from_numpy(img).unsqueeze(0).to(args.device)
        preb = model(img)
        preb = preb.detach().cpu().numpy().squeeze()
    preb_label = []
    for j in range(preb.shape[1]):
        preb_label.append(np.argmax(preb[:, j], axis=0))
    no_repeat_blank_label = []
    pre_c = preb_label[0]
    if pre_c != len(CHARS) - 1:
        no_repeat_blank_label.append(pre_c)
    for c in preb_label:
        if (pre_c == c) or (c == len(CHARS) - 1):
            if c == len(CHARS) - 1:
                pre_c = c
            continue
        no_repeat_blank_label.append(c)
        pre_c = c

    if args.export_onnx:
        print('export pytroch model to onnx model...')
        onnx_input = torch.randn(1, 3, 24, 94, device=args.device)
        torch.onnx.export(
            model,
            onnx_input,
            'LPRNet.onnx',
            input_names=['input'],
            output_names=['output'],
            dynamic_axes={'input': {0: 'batch'}, 'output': {0: 'batch'}} if args.dynamic else None,
            opset_version=12,
            )
    return ''.join(list(map(lambda x: CHARS[x], no_repeat_blank_label)))

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='parameters to vaildate net')
    parser.add_argument('--model', default='model/lprnet.pth', help='model path to vaildate')
    parser.add_argument('--img', default='imgs/川JK0707.jpg', help='the image path')
    parser.add_argument('--device', default='cuda', help='Use cuda to vaildate model')
    parser.add_argument('--export_onnx', default=False, help='export model to onnx')
    parser.add_argument('--dynamic', default=False, help='use dynamic batch size')
    args = parser.parse_args()

    result = validation(args)
    print('recongise result:', result)