train.py 9.86 KB
Newer Older
liuhy's avatar
liuhy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# -*- coding: utf-8 -*-
# /usr/bin/env/python3
from load_data import CHARS, CHARS_DICT, LPRDataLoader
from lprnet import build_lprnet
from torch.autograd import Variable
import torch.nn.functional as F
from torch.utils.data import *
from torch import optim
import torch.nn as nn
import numpy as np
import argparse
import torch
import time
import os

liuhy's avatar
liuhy committed
16
print('Cuda Availabel:', torch.cuda.is_available())
liuhy's avatar
liuhy committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

def sparse_tuple_for_ctc(T_length, lengths):
    input_lengths = []
    target_lengths = []

    for ch in lengths:
        input_lengths.append(T_length)
        target_lengths.append(ch)
    return tuple(input_lengths), tuple(target_lengths)

def adjust_learning_rate(optimizer, cur_epoch, base_lr, lr_schedule):
    """
    Sets the learning rate
    """
    lr = 0
    for i, e in enumerate(lr_schedule):
        if cur_epoch < e:
            lr = base_lr * (0.1 ** i)
            break
    if lr == 0:
        lr = base_lr
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr
    return lr

def collate_fn(batch):
    imgs = []
    labels = []
    lengths = []
    for _, sample in enumerate(batch):
        img, label, length = sample
        imgs.append(torch.from_numpy(img))
        labels.extend(label)
        lengths.append(length)
    labels = np.asarray(labels).flatten().astype(np.int16)
    return (torch.stack(imgs, 0), torch.from_numpy(labels), lengths)

liuhy's avatar
liuhy committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def Greedy_Decode_Eval(Net, datasets, args):
    epoch_size = len(datasets) // args.test_batch_size
    batch_iterator = iter(DataLoader(datasets, args.test_batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collate_fn))

    Tp = 0
    Tn_1 = 0
    Tn_2 = 0
    t1 = time.time()
    for i in range(epoch_size):
        # load train data
        images, labels, lengths = next(batch_iterator)
        start = 0
        targets = []
        for length in lengths:
            label = labels[start:start+length]
            targets.append(label)
            start += length
        targets = np.array([el.numpy() for el in targets])

        if args.cuda:
            images = Variable(images.cuda())
        else:
            images = Variable(images)

        # forward
        Net.eval()
        prebs = Net(images)
        # greedy decode
        prebs = prebs.cpu().detach().numpy()
        preb_labels = []
        for i in range(prebs.shape[0]):
            preb = prebs[i, :, :]
            preb_label = []
            for j in range(preb.shape[1]):
                preb_label.append(np.argmax(preb[:, j], axis=0))
            no_repeat_blank_label = []
            pre_c = preb_label[0]
            if pre_c != len(CHARS) - 1:
                no_repeat_blank_label.append(pre_c)
            for c in preb_label: # dropout repeate label and blank label
                if (pre_c == c) or (c == len(CHARS) - 1):
                    if c == len(CHARS) - 1:
                        pre_c = c
                    continue
                no_repeat_blank_label.append(c)
                pre_c = c
            preb_labels.append(no_repeat_blank_label)
        for i, label in enumerate(preb_labels):
            if len(label) != len(targets[i]):
                Tn_1 += 1
                continue
            if (np.asarray(targets[i]) == np.asarray(label)).all():
                Tp += 1
            else:
                Tn_2 += 1

    Acc = Tp * 1.0 / (Tp + Tn_1 + Tn_2)
    print("[Info] Test Accuracy: {} [{}:{}:{}:{}]".format(Acc, Tp, Tn_1, Tn_2, (Tp+Tn_1+Tn_2)))
    t2 = time.time()
    print("[Info] Test Speed: {}s 1/{}]".format((t2 - t1) / len(datasets), len(datasets)))

liuhy's avatar
liuhy committed
115

liuhy's avatar
liuhy committed
116
def train(args):
liuhy's avatar
liuhy committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    T_length = 18 # args.lpr_max_len
    epoch = 0 + args.resume_epoch
    loss_val = 0

    if not os.path.exists(args.save_folder):
        os.mkdir(args.save_folder)

    lprnet = build_lprnet(class_num=len(CHARS), phase=args.phase_train)
    device = torch.device("cuda:0" if args.cuda else "cpu")
    lprnet.to(device)
    print("Successful to build network!")

    # load pretrained model
    if args.pretrained_model:
        lprnet.load_state_dict(torch.load(args.pretrained_model))
        print("load pretrained model successful!")
    else:
        def xavier(param):
            nn.init.xavier_uniform(param)

        def weights_init(m):
            for key in m.state_dict():
                if key.split('.')[-1] == 'weight':
                    if 'conv' in key:
                        nn.init.kaiming_normal_(m.state_dict()[key], mode='fan_out')
                    if 'bn' in key:
                        m.state_dict()[key][...] = xavier(1)
                elif key.split('.')[-1] == 'bias':
                    m.state_dict()[key][...] = 0.01

        lprnet.backbone.apply(weights_init)
        lprnet.container.apply(weights_init)
        print("initial net weights successful!")

    # define optimizer
    optimizer = optim.RMSprop(lprnet.parameters(), lr=args.learning_rate, alpha = 0.9, eps=1e-08,
                         momentum=args.momentum, weight_decay=args.weight_decay)
    train_img_dirs = os.path.expanduser(args.train_img_dirs)
    test_img_dirs = os.path.expanduser(args.test_img_dirs)
    train_dataset = LPRDataLoader(train_img_dirs.split(','), args.img_size)
    test_dataset = LPRDataLoader(test_img_dirs.split(','), args.img_size)

    epoch_size = len(train_dataset) // args.train_batch_size
    max_iter = args.max_epoch * epoch_size

    ctc_loss = nn.CTCLoss(blank=len(CHARS)-1, reduction='mean') # reduction: 'none' | 'mean' | 'sum'

    if args.resume_epoch > 0:
        start_iter = args.resume_epoch * epoch_size
    else:
        start_iter = 0

    for iteration in range(start_iter, max_iter):
        if iteration % epoch_size == 0:
            # create batch iterator
            batch_iterator = iter(DataLoader(train_dataset, args.train_batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collate_fn))
            loss_val = 0
            epoch += 1

        if iteration !=0 and iteration % args.save_interval == 0:
liuhy's avatar
liuhy committed
177
            torch.save(lprnet.state_dict(), args.save_folder + 'LPRNet_' + 'iteration_' + repr(iteration) + '.pth')
liuhy's avatar
liuhy committed
178
179
180

        if (iteration + 1) % args.test_interval == 0:
            Greedy_Decode_Eval(lprnet, test_dataset, args)
liuhy's avatar
liuhy committed
181
            # lprnet.train()
liuhy's avatar
liuhy committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

        start_time = time.time()
        # load train data
        images, labels, lengths = next(batch_iterator)
        # get ctc parameters
        input_lengths, target_lengths = sparse_tuple_for_ctc(T_length, lengths)
        # update lr
        lr = adjust_learning_rate(optimizer, epoch, args.learning_rate, args.lr_schedule)

        if args.cuda:
            images = Variable(images, requires_grad=False).cuda()
            labels = Variable(labels, requires_grad=False).cuda()
        else:
            images = Variable(images, requires_grad=False)
            labels = Variable(labels, requires_grad=False)

        # forward
        logits = lprnet(images)
        log_probs = logits.permute(2, 0, 1) # for ctc loss: T x N x C
        log_probs = log_probs.log_softmax(2).requires_grad_()
        # backprop
        optimizer.zero_grad()
        loss = ctc_loss(log_probs, labels, input_lengths=input_lengths, target_lengths=target_lengths)
        if loss.item() == np.inf:
            continue
        loss.backward()
        optimizer.step()
        loss_val += loss.item()
        end_time = time.time()
        if iteration % 20 == 0:
            print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size)
                  + '|| Totel iter ' + repr(iteration) + ' || Loss: %.4f||' % (loss.item()) +
                  'Batch time: %.4f sec. ||' % (end_time - start_time) + 'LR: %.8f' % (lr))
    # final test
    print("Final test Accuracy:")
    Greedy_Decode_Eval(lprnet, test_dataset, args)

    # save final parameters
    torch.save(lprnet.state_dict(), args.save_folder + 'Final_LPRNet_model.pth')

liuhy's avatar
liuhy committed
222
223
def get_parser():
    parser = argparse.ArgumentParser(description='parameters to train net')
liuhy's avatar
liuhy committed
224
    parser.add_argument('--max_epoch', default=15, type=int, help='epoch to train the network')
liuhy's avatar
liuhy committed
225
226
    parser.add_argument('--img_size', default=[94, 24], help='the image size')
    parser.add_argument('--train_img_dirs', default="data/train", help='the train images path')
liuhy's avatar
liuhy committed
227
    parser.add_argument('--test_img_dirs', default="imgs", help='the test images path')
liuhy's avatar
liuhy committed
228
229
230
231
232
    parser.add_argument('--dropout_rate', default=0.5, type=float, help='dropout rate.')
    parser.add_argument('--learning_rate', default=0.1, type=float, help='base value of learning rate.')
    parser.add_argument('--lpr_max_len', default=8, type=int, help='license plate number max length.')
    parser.add_argument('--train_batch_size', default=64, type=int, help='training batch size.')
    parser.add_argument('--test_batch_size', default=10, type=int, help='testing batch size.')
liuhy's avatar
liuhy committed
233
234
235
236
237
238
239
240
241
242
    parser.add_argument('--phase_train', default=True, type=bool, help='train or test phase flag.')
    parser.add_argument('--num_workers', default=8, type=int, help='Number of workers used in dataloading')
    parser.add_argument('--cuda', default=True, type=bool, help='Use cuda to train model')
    parser.add_argument('--resume_epoch', default=10, type=int, help='resume iter for retraining')
    parser.add_argument('--save_interval', default=2000, type=int, help='interval for save model state dict')
    parser.add_argument('--test_interval', default=2000, type=int, help='interval for evaluate')
    parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
    parser.add_argument('--weight_decay', default=2e-5, type=float, help='Weight decay for SGD')
    parser.add_argument('--lr_schedule', default=[4, 8, 12, 14, 16], help='schedule for learning rate.')
    parser.add_argument('--save_folder', default='./weights/', help='Location to save checkpoint models')
liuhy's avatar
liuhy committed
243
    parser.add_argument('--pretrained_model', default='model/lprnet.pth', help='pretrained base model')
liuhy's avatar
liuhy committed
244
245
    args = parser.parse_args()
    return args
liuhy's avatar
liuhy committed
246
247

if __name__ == "__main__":
liuhy's avatar
liuhy committed
248
249
    args = get_parser()
    train(args)