run_demo_video_continuation.py 7.88 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import argparse

import cv2
import datetime
import PIL.Image
import numpy as np

import torch
import torch.distributed as dist

from transformers import AutoTokenizer, UMT5EncoderModel
from torchvision.io import write_video
from diffusers.utils import load_video

from longcat_video.pipeline_longcat_video import LongCatVideoPipeline
from longcat_video.modules.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from longcat_video.modules.autoencoder_kl_wan import AutoencoderKLWan
from longcat_video.modules.longcat_video_dit import LongCatVideoTransformer3DModel
from longcat_video.context_parallel import context_parallel_util
from longcat_video.context_parallel.context_parallel_util import init_context_parallel


def torch_gc():
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()


def get_fps(video_path):
    cap = cv2.VideoCapture(video_path)
    original_fps = cap.get(cv2.CAP_PROP_FPS)
    cap.release()
    
    return original_fps


def generate(args):
    # case setup
    video_path = "assets/motorcycle.mp4"
    video = load_video(video_path)
    prompt = "A person rides a motorcycle along a long, straight road that stretches between a body of water and a forested hillside. The rider steadily accelerates, keeping the motorcycle centered between the guardrails, while the scenery passes by on both sides. The video captures the journey from the rider’s perspective, emphasizing the sense of motion and adventure."
    negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
    num_cond_frames = 13

    # load parsed args
    checkpoint_dir = args.checkpoint_dir
    context_parallel_size = args.context_parallel_size
    enable_compile = args.enable_compile

    # prepare distributed environment
    rank = int(os.environ['RANK'])
    num_gpus = torch.cuda.device_count()
    local_rank = rank % num_gpus
    torch.cuda.set_device(local_rank)
    dist.init_process_group(backend="nccl", timeout=datetime.timedelta(seconds=3600*24))
    global_rank    = dist.get_rank()
    num_processes  = dist.get_world_size()

    # initialize context parallel before loading models
    init_context_parallel(context_parallel_size=context_parallel_size, global_rank=global_rank, world_size=num_processes)
    cp_size = context_parallel_util.get_cp_size()
    cp_split_hw = context_parallel_util.get_optimal_split(cp_size)

    tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir, subfolder="tokenizer", torch_dtype=torch.bfloat16)
    text_encoder = UMT5EncoderModel.from_pretrained(checkpoint_dir, subfolder="text_encoder", torch_dtype=torch.bfloat16)
    vae = AutoencoderKLWan.from_pretrained(checkpoint_dir, subfolder="vae", torch_dtype=torch.bfloat16)
    scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(checkpoint_dir, subfolder="scheduler", torch_dtype=torch.bfloat16)
    dit = LongCatVideoTransformer3DModel.from_pretrained(checkpoint_dir, subfolder="dit", cp_split_hw=cp_split_hw, torch_dtype=torch.bfloat16)

    if enable_compile:
        dit = torch.compile(dit)

    pipe = LongCatVideoPipeline(
        tokenizer = tokenizer,
        text_encoder = text_encoder,
        vae = vae,
        scheduler = scheduler,
        dit = dit,
    )
    pipe.to(local_rank)

    global_seed = 42
    seed = global_seed + global_rank

    generator = torch.Generator(device=local_rank)
    generator.manual_seed(seed)

    target_fps = 15
    target_size = video[0].size  # (width, height)
    current_fps = get_fps(video_path)
    stride = max(1, round(current_fps / target_fps))

    ### vc (480p)
    output = pipe.generate_vc(
        video=video[::stride],
        prompt=prompt,
        negative_prompt=negative_prompt,
        resolution='480p', # 480p / 720p
        num_frames=93,
        num_cond_frames=num_cond_frames,
        num_inference_steps=50,
        guidance_scale=4.0,
        generator=generator,
        use_kv_cache=True,
        offload_kv_cache=False,
    )[0]

    if local_rank == 0:
        output = [(output[i] * 255).astype(np.uint8) for i in range(output.shape[0])]
        output = [PIL.Image.fromarray(img) for img in output]
        output = [frame.resize(target_size, PIL.Image.BICUBIC) for frame in output]

        output = video[::stride] + output[num_cond_frames:]
        output_tensor = torch.from_numpy(np.array(output))
        write_video("output_vc.mp4", output_tensor, fps=15, video_codec="libx264", options={"crf": f"{18}"})
    del output
    torch_gc()

    ### vc distill (480p)
    cfg_step_lora_path = os.path.join(checkpoint_dir, 'lora/cfg_step_lora.safetensors')
    pipe.dit.load_lora(cfg_step_lora_path, 'cfg_step_lora')
    pipe.dit.enable_loras(['cfg_step_lora'])

    if enable_compile:
        dit = torch.compile(dit)

    output_distill = pipe.generate_vc(
        video=video[::stride],
        prompt=prompt,
        resolution='480p', # 480p / 720p
        num_frames=93,
        num_cond_frames=num_cond_frames,
        num_inference_steps=16,
        use_distill=True,
        guidance_scale=1.0,
        generator=generator,
        use_kv_cache=True,
        offload_kv_cache=False,
        enhance_hf=False,
    )[0]
    pipe.dit.disable_all_loras()

    if local_rank == 0:
        output_processed = [(output_distill[i] * 255).astype(np.uint8) for i in range(output_distill.shape[0])]
        output_processed = [PIL.Image.fromarray(img) for img in output_processed]
        output_processed = [frame.resize(target_size, PIL.Image.BICUBIC) for frame in output_processed]

        output = video[::stride] + output_processed[num_cond_frames:]
        output_tensor = torch.from_numpy(np.array(output))
        write_video("output_vc_distill.mp4", output_tensor, fps=15, video_codec="libx264", options={"crf": f"{18}"})

    ### vc refinement (720p)
    refinement_lora_path = os.path.join(checkpoint_dir, 'lora/refinement_lora.safetensors')
    pipe.dit.load_lora(refinement_lora_path, 'refinement_lora')
    pipe.dit.enable_loras(['refinement_lora'])
    pipe.dit.enable_bsa()

    if enable_compile:
        dit = torch.compile(dit)
    
    stage1_video = [(output_distill[i] * 255).astype(np.uint8) for i in range(output_distill.shape[0])]
    stage1_video = [PIL.Image.fromarray(img) for img in stage1_video]
    del output_distill 
    torch_gc()

    target_fps = 30
    stride = max(1, round(current_fps / target_fps))

    output_refine = pipe.generate_refine(
        video=video[::stride],
        prompt=prompt,
        stage1_video=stage1_video,
        num_cond_frames=num_cond_frames*2,
        num_inference_steps=50,
        generator=generator,
    )[0]

    pipe.dit.disable_all_loras()
    pipe.dit.disable_bsa()

    if local_rank == 0:
        output_refine = [(output_refine[i] * 255).astype(np.uint8) for i in range(output_refine.shape[0])]
        output_refine = [PIL.Image.fromarray(img) for img in output_refine]
        output_refine = [frame.resize(target_size, PIL.Image.BICUBIC) for frame in output_refine]
        output_refine = video[::stride] + output_refine[num_cond_frames*2:]

        output_tensor = torch.from_numpy(np.array(output_refine))
        write_video("output_vc_refine.mp4", output_tensor, fps=30, video_codec="libx264", options={"crf": f"{10}"})


def _parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--context_parallel_size",
        type=int,
        default=1,
    )
    parser.add_argument(
        "--checkpoint_dir",
        type=str,
        default=None,
    )
    parser.add_argument(
        '--enable_compile',
        action='store_true',
    )

    args = parser.parse_args()

    return args


if __name__ == "__main__":
    args = _parse_args()
    generate(args)