blocks.py 7.52 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# References:
# https://github.com/hpcaitech/Open-Sora
# https://github.com/facebookresearch/DiT/blob/main/models.py
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
# https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py#L14


import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.amp as amp

from typing import Optional


class FeedForwardSwiGLU(nn.Module):
    def __init__(
        self,
        dim: int,
        hidden_dim: int,
        multiple_of: int = 256,
        ffn_dim_multiplier: Optional[float] = None,
    ):
        super().__init__()
        hidden_dim = int(2 * hidden_dim / 3)
        # custom dim factor multiplier
        if ffn_dim_multiplier is not None:
            hidden_dim = int(ffn_dim_multiplier * hidden_dim)
        hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)

        self.dim = dim
        self.hidden_dim = hidden_dim
        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
        self.w3 = nn.Linear(dim, hidden_dim, bias=False)

    def forward(self, x):
        return self.w2(F.silu(self.w1(x)) * self.w3(x))


class RMSNorm_FP32(torch.nn.Module):
    def __init__(self, dim: int, eps: float):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


class LayerNorm_FP32(nn.LayerNorm):
    def __init__(self, dim, eps, elementwise_affine):
        super().__init__(dim, eps=eps, elementwise_affine=elementwise_affine)

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        origin_dtype = inputs.dtype
        out = F.layer_norm(
            inputs.float(), 
            self.normalized_shape, 
            None if self.weight is None else self.weight.float(), 
            None if self.bias is None else self.bias.float() ,
            self.eps
        ).to(origin_dtype)
        return out


class PatchEmbed3D(nn.Module):
    """Video to Patch Embedding.

    Args:
        patch_size (int): Patch token size. Default: (2,4,4).
        in_chans (int): Number of input video channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(
        self,
        patch_size=(2, 4, 4),
        in_chans=3,
        embed_dim=96,
        norm_layer=None,
        flatten=True,
    ):
        super().__init__()
        self.patch_size = patch_size
        self.flatten = flatten

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        """Forward function."""
        # padding
        _, _, D, H, W = x.size()
        if W % self.patch_size[2] != 0:
            x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
        if H % self.patch_size[1] != 0:
            x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
        if D % self.patch_size[0] != 0:
            x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))

        B, C, T, H, W = x.shape
        x = self.proj(x)  # (B C T H W)
        if self.norm is not None:
            D, Wh, Ww = x.size(2), x.size(3), x.size(4)
            x = x.flatten(2).transpose(1, 2)
            x = self.norm(x)
            x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCTHW -> BNC
        return x


def modulate_fp32(norm_func, x, shift, scale):
    # Suppose x is (B, N, D), shift is (B, -1, D), scale is (B, -1, D)
    # ensure the modulation params be fp32
    assert shift.dtype == torch.float32, scale.dtype == torch.float32
    dtype = x.dtype
    x = norm_func(x.to(torch.float32))
    x = x * (scale + 1) + shift
    x = x.to(dtype)
    return x


class FinalLayer_FP32(nn.Module):
    """
    The final layer of DiT.
    """

    def __init__(self, hidden_size, num_patch, out_channels, adaln_tembed_dim):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_patch = num_patch
        self.out_channels = out_channels
        self.adaln_tembed_dim = adaln_tembed_dim

        self.norm_final = LayerNorm_FP32(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(adaln_tembed_dim, 2 * hidden_size, bias=True))

    def forward(self, x, t, latent_shape):
        # timestep shape: [B, T, C]
        assert t.dtype == torch.float32
        B, N, C = x.shape
        T, _, _ = latent_shape

        with amp.autocast('cuda', dtype=torch.float32):
            shift, scale = self.adaLN_modulation(t).unsqueeze(2).chunk(2, dim=-1) # [B, T, 1, C]
            x = modulate_fp32(self.norm_final, x.view(B, T, -1, C), shift, scale).view(B, N, C)
            x = self.linear(x)
        return x


class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, t_embed_dim, frequency_embedding_size=256):
        super().__init__()
        self.t_embed_dim = t_embed_dim
        self.frequency_embedding_size = frequency_embedding_size
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, t_embed_dim, bias=True),
            nn.SiLU(),
            nn.Linear(t_embed_dim, t_embed_dim, bias=True),
        )

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        half = dim // 2
        freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half)
        freqs = freqs.to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t, dtype):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        if t_freq.dtype != dtype:
            t_freq = t_freq.to(dtype)
        t_emb = self.mlp(t_freq)
        return t_emb


class CaptionEmbedder(nn.Module):
    """
    Embeds class labels into vector representations.
    """

    def __init__(self, in_channels, hidden_size):
        super().__init__()
        self.in_channels = in_channels
        self.hidden_size = hidden_size
        self.y_proj = nn.Sequential(
            nn.Linear(in_channels, hidden_size, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )

    def forward(self, caption):
        B, _, N, C = caption.shape
        caption = self.y_proj(caption)
        return caption