bsa_interface.py 24.5 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
import os
import torch
import torch.nn.functional as F
import triton
import triton.language as tl
import math

from .common import _attn_fwd_gating, _attn_bwd_preprocess, configs_gating_preset
from .flash_attn_bsa_varlen_mask import (
    _attn_fwd_bsa_varlen, _attn_fwd_bsa_varlen_align, _attn_bwd_dkdv_bsa_varlen_wrapper, _attn_bwd_dq_bsa_varlen_wrapper, _attn_bwd_dq_bsa_varlen_align_wrapper,
    configs_fwd_bsa_varlen_preset, configs_fwd_bsa_varlen_align_preset, configs_bwd_dkdv_bsa_varlen_preset, configs_bwd_dq_bsa_varlen_preset, configs_bwd_dq_bsa_varlen_align_preset
)

from .communicate import p2p_communicate

from ..context_parallel import context_parallel_util

torch._dynamo.config.cache_size_limit = 32

def is_cuda():
    return triton.runtime.driver.active.get_current_target().backend == "cuda"

def supports_tma():
    return is_cuda() and torch.cuda.get_device_capability()[0] >= 9

HAS_TMA_DESC = "nv_tma_desc_type" in dir(tl)

if HAS_TMA_DESC:
    print("TMA benchmarks will be running with experimental grid constant TMA descriptor.", )
else:
    print("TMA benchmarks will be running without grid constant TMA descriptor.", )


# TmaAutoTuneHelper used in htyu's PR #5622
class TmaAutoTuneHelper:

    # duck typing wrapper to implement the same interface as TmaDescKernelParam in Triton PR #4498
    class KernelParamWrapper:

        def __init__(self, desc):
            self.desc = desc

        def tma_desc_cpu_ptr(self):
            return self.desc.data_ptr()

    TMA_SIZE = 128

    def __init__(self):
        self.fill_1d_tma_descriptor_inner = (triton.runtime.driver.active.utils.fill_1d_tma_descriptor)
        self.fill_2d_tma_descriptor_inner = (triton.runtime.driver.active.utils.fill_2d_tma_descriptor)
        if HAS_TMA_DESC:
            self.descriptors = {}
        else:
            self.cuda_descriptors = {}

    # Call this method outside of the lambda function for grid size
    def init_tma_descriptor(self, name):
        if HAS_TMA_DESC:
            self.descriptors[name] = torch.empty(TmaAutoTuneHelper.TMA_SIZE, device="cpu", dtype=torch.int8)
        else:
            self.cuda_descriptors[name] = torch.empty(TmaAutoTuneHelper.TMA_SIZE, device="cuda", dtype=torch.int8)

    # Call this method inside the lambda function for grid size
    def fill_1d_tma_descriptor(self, name, ptr, dim, block_dim, element_size):
        if HAS_TMA_DESC:
            desc_x = self.descriptors[name]
            assert desc_x.data_ptr() % 64 == 0
            self.fill_1d_tma_descriptor_inner(ptr, dim, block_dim, element_size, desc_x.data_ptr())
        else:
            desc_x = self.cuda_descriptors[name]
            buf_x = torch.empty_like(desc_x, device="cpu", pin_memory=True)
            self.fill_1d_tma_descriptor_inner(ptr, dim, block_dim, element_size, buf_x.data_ptr())
            desc_x.copy_(buf_x, non_blocking=True)

    # Call this method inside the lambda function for grid size
    def fill_2d_tma_descriptor(self, name, ptr, dim1, dim0, block_dim1, block_dim0, element_size):
        if HAS_TMA_DESC:
            desc_x = self.descriptors[name]
            assert desc_x.data_ptr() % 64 == 0
            self.fill_2d_tma_descriptor_inner(ptr, dim1, dim0, block_dim1, block_dim0, element_size, desc_x.data_ptr())
        else:
            desc_x = self.cuda_descriptors[name]
            buf_x = torch.empty_like(desc_x, device="cpu", pin_memory=True)
            self.fill_2d_tma_descriptor_inner(ptr, dim1, dim0, block_dim1, block_dim0, element_size, buf_x.data_ptr())
            desc_x.copy_(buf_x, non_blocking=True)

    def get_tma_descriptor_kernel_param(self, name):
        if HAS_TMA_DESC:
            assert self.descriptors[name] is not None
            return self.KernelParamWrapper(self.descriptors[name])
        else:
            assert self.cuda_descriptors[name] is not None
            return self.cuda_descriptors[name]


@triton.jit
def create_mask_from_indices_kernel(
    block_indices,
    block_mask,
    stride_bz, stride_bh, stride_bm, stride_bs,
    stride_mz, stride_mh, stride_mm, stride_mn,
    H,
):
    i_zh, i_m, i_s = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    i_z, i_h = i_zh // H, i_zh % H

    off_b = i_z.to(tl.int64) * stride_bz + i_h.to(tl.int64) * stride_bh + i_m.to(tl.int64) * stride_bm + i_s.to(tl.int64) * stride_bs
    
    b_i = tl.load(block_indices + off_b)
    
    off_m = i_z.to(tl.int64) * stride_mz + i_h.to(tl.int64) * stride_mh + i_m.to(tl.int64) * stride_mm + b_i.to(tl.int64) * stride_mn
    
    b_m = 1
    tl.store(block_mask + off_m, b_m.to(block_mask.dtype.element_ty))

def create_mask_from_indices_triton(
    block_indices,
    N_cols
):
    B, H, N_rows, S = block_indices.shape
    block_mask = torch.zeros((B, H, N_rows, N_cols), dtype=torch.bool, device=block_indices.device)
    create_mask_from_indices_kernel[(B * H, N_rows, S)](
        block_indices,
        block_mask,
        block_indices.stride(0), block_indices.stride(1), block_indices.stride(2), block_indices.stride(3),
        block_mask.stride(0), block_mask.stride(1), block_mask.stride(2), block_mask.stride(3),
        H,
    )
    return block_mask

@torch.compile
def create_mask_from_indices_varlen(block_indices, N_cols_mask):
   
    B, H, M, _ = block_indices.shape
    device = block_indices.device
    
    mask = torch.zeros((B, H, M, N_cols_mask), dtype=torch.bool, device=device)
    
    valid = block_indices < N_cols_mask
    
    b_idx = torch.arange(B, device=device)[:, None, None, None].expand_as(block_indices)
    h_idx = torch.arange(H, device=device)[None, :, None, None].expand_as(block_indices)
    m_idx = torch.arange(M, device=device)[None, None, :, None].expand_as(block_indices)
    
    valid_coords = (b_idx[valid], h_idx[valid], m_idx[valid], block_indices[valid])
    
    mask[valid_coords] = True
    
    return mask

@torch.compile
def create_indices_k_from_indices_q_varlen(
    block_indices,
    N_cols_mask # indicate the number of the last dimension of the bool mask, since this information cannot be determined by block_indices, which may contain invalid elements
):
    block_mask_qk = create_mask_from_indices_varlen(block_indices, N_cols_mask)
    B, H, M, N = block_mask_qk.shape
    block_mask_kq = block_mask_qk.permute(0, 1, 3, 2)
    indices = torch.arange(M, device=block_indices.device).view(1, 1, 1, -1).expand_as(block_mask_kq)
    block_indices_k = torch.where(block_mask_kq, indices, M)
    block_indices_k, _ = torch.sort(block_indices_k, dim=-1)
        
    block_indices_k_lens = (block_indices_k < M).sum(dim=-1)

    return block_indices_k, block_indices_k_lens


@torch.compile
def mean_pooling_compression(
    x: torch.Tensor,
    block_size: int
) -> torch.Tensor:
    B, H, S = x.shape[:3]
    num_block = math.ceil(S / block_size)
    if S % block_size != 0:
        x = F.pad(x, (0, 0, 0, num_block * block_size - S))
    x_cmp = x.view(B, H, num_block, block_size, -1).mean(dim=3)
    return x_cmp

@torch.compile
def cal_score(q, k):
    k_transposed = k.transpose(-1, -2)  # [b, h, d, s_k]
    score = torch.matmul(q, k_transposed)  # [b, h, s_q, s_k]
    return score

def cal_score_triton(q, k):
    B, H, s_q, D = q.shape
    s_k = k.shape[2]
    
    score = torch.empty(B, H, s_q, s_k, device=q.device, dtype=q.dtype)
    
    kernel_config = {} if os.environ.get('TRITON_AUTOTUNE_ENBALE', '0') == '1' else configs_gating_preset['default']
    
    grid = lambda args: (triton.cdiv(s_q, args["BLOCK_M"]), B * H, 1)
    _attn_fwd_gating[grid](
        q, k, score,
        q.stride(0), q.stride(1), q.stride(2), q.stride(3),
        k.stride(0), k.stride(1), k.stride(2), k.stride(3),
        score.stride(0), score.stride(1), score.stride(2), score.stride(3),
        H, s_q, s_k,
        HEAD_DIM=D,
        **kernel_config
    )
    return score

@torch.compile
def get_select_indices_topk(q, k, sparsity):
    score = cal_score(q, k)
    block_indices, block_indices_lens = get_select_indices_topk_from_score(score, sparsity)
    return block_indices, block_indices_lens

@torch.compile
def get_select_indices_topk_from_score(score, sparsity):
    num_selected = int((1 - sparsity) * score.shape[-1])
    block_indices = torch.topk(score, num_selected)[1]

    block_indices_lens = torch.full(
        (block_indices.shape[0], block_indices.shape[1], block_indices.shape[2]), 
        num_selected, 
        dtype=torch.int32,
        device=block_indices.device
    )

    return block_indices, block_indices_lens

@torch.compile
def get_select_indices_cdf(q, k, cdf_threshold):
    score = cal_score(q, k)
    head_dim = q.shape[-1]
    block_indices, block_indices_lens = get_select_indices_cdf_from_score(score, cdf_threshold, 1 / head_dim**0.5)
    return block_indices, block_indices_lens

@torch.compile
def get_select_indices_cdf_from_score(score, cdf_threshold, sm_scale):
    weights = torch.softmax(score * sm_scale, dim=-1)
    
    B, H, Sq, Sk = weights.shape
    cdf_threshold = torch.full((H,), cdf_threshold, device=weights.device).view(1, H, 1, 1).expand(B, -1, Sq, -1)
    weights_sorted = torch.sort(weights, dim=-1, descending=True)
    cdf = torch.cumsum(weights_sorted.values, dim=-1)
    num_selected = torch.searchsorted(cdf, cdf_threshold, right=True)
    
    return weights_sorted.indices, num_selected.squeeze(-1)

@torch.compile
def get_select_indices_cdf_topk(q, k, sparsity, cdf_threshold):
    score = cal_score(q, k)
    head_dim = q.shape[-1]
    block_indices, block_indices_lens = get_select_indices_cdf_topk_from_score(score, sparsity, cdf_threshold, 1 / head_dim**0.5)
    return block_indices, block_indices_lens

@torch.compile
def get_select_indices_cdf_topk_from_score(score, sparsity, cdf_threshold, sm_scale):
    weights = torch.softmax(score * sm_scale, dim=-1)
    
    B, H, Sq, Sk = weights.shape
    cdf_threshold = torch.full((H,), cdf_threshold, device=weights.device).view(1, H, 1, 1).expand(B, -1, Sq, -1)
    weights_sorted = torch.sort(weights, dim=-1, descending=True)
    cdf = torch.cumsum(weights_sorted.values, dim=-1)
    num_selected = torch.searchsorted(cdf, cdf_threshold, right=True)

    # max(cdf, topk)
    num_selected_topk = int((1 - sparsity) * score.shape[-1])
    num_selected[num_selected < num_selected_topk] = num_selected_topk

    return weights_sorted.indices, num_selected.squeeze(-1)

def get_select_indices(q, k, sparsity, cdf_threshold):
    if sparsity is not None and cdf_threshold is None:
        block_indices, block_indices_lens = get_select_indices_topk(q, k, sparsity)
    elif sparsity is None and cdf_threshold is not None:
        block_indices, block_indices_lens = get_select_indices_cdf(q, k, cdf_threshold)
    elif sparsity is not None and cdf_threshold is not None:
        block_indices, block_indices_lens = get_select_indices_cdf_topk(q, k, sparsity, cdf_threshold)
    else:
        raise ValueError
    return block_indices, block_indices_lens

def get_select_indices_from_score(score, sparsity, cdf_threshold):
    if sparsity is not None and cdf_threshold is None:
        block_indices, block_indices_lens = get_select_indices_topk_from_score(score, sparsity)
    elif sparsity is None and cdf_threshold is not None:
        block_indices, block_indices_lens = get_select_indices_cdf_from_score(score, cdf_threshold)
    elif sparsity is not None and cdf_threshold is not None:
        block_indices, block_indices_lens = get_select_indices_cdf_topk_from_score(score, sparsity, cdf_threshold)
    else:
        raise ValueError
    return block_indices, block_indices_lens

def attn_fwd_bsa_varlen_triton(
    q, 
    k, 
    v, 
    sm_scale, 
    block_indices, 
    block_indices_lens, 
    chunk_size_q, 
    chunk_size_k,
    sparsity
):
    
    B, H, Seq, D = q.shape

    o = torch.empty_like(q)
    M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
    
    grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1)

    config_key = 'BLOCK_N_LG=64' if chunk_size_k == 64 else 'default'
    if chunk_size_k > 128:
        fwd_func = _attn_fwd_bsa_varlen
        kernel_config = {} if os.environ.get('TRITON_AUTOTUNE_ENBALE', '0') == '1' else configs_fwd_bsa_varlen_preset[config_key]
    else:
        fwd_func = _attn_fwd_bsa_varlen_align
        kernel_config = {} if os.environ.get('TRITON_AUTOTUNE_ENBALE', '0') == '1' else configs_fwd_bsa_varlen_align_preset[config_key]
    
    block_indices = block_indices.contiguous()
    block_indices_lens = block_indices_lens.contiguous()
    
    fwd_func[grid](
        q, k, v, sm_scale, M, o, 
        block_indices, # [B, H, M_COMPRESS, S]
        block_indices_lens, # [B, H, M_COMPRESS, S_MAX]
        q.stride(0), q.stride(1), q.stride(2), q.stride(3),
        k.stride(0), k.stride(1), k.stride(2), k.stride(3),
        v.stride(0), v.stride(1), v.stride(2), v.stride(3), 
        o.stride(0), o.stride(1), o.stride(2), o.stride(3),
        block_indices.stride(0), block_indices.stride(1), block_indices.stride(2), block_indices.stride(3),
        block_indices_lens.stride(0), block_indices_lens.stride(1), block_indices_lens.stride(2),
        H, Seq, 
        D,
        BLOCK_M=chunk_size_q,
        BLOCK_N_LG=chunk_size_k,
        SPARSITY=sparsity,
        **kernel_config
    )
    
    LN2 = 0.6931471824645996
    lse = M * LN2 # convert back to natural units (M is of base 2)

    return o, lse

def attn_bwd_bsa_varlen_triton(
    do, 
    q, 
    k, 
    v, 
    o, 
    dq,
    dk,
    dv,
    sm_scale, 
    M, 
    block_indices, 
    block_indices_lens,
    chunk_size_q, 
    chunk_size_k,
    sparsity
):
    RCP_LN2 = 1.4426950408889634
    M = M * RCP_LN2 # ln -> log2
    
    do = do.contiguous()
    # assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride()

    BATCH, N_HEAD, N_CTX, HEAD_DIM = q.shape
    N_CTX_KV = k.shape[-2]

    RCP_LN2 = 1.4426950408889634  # = 1.0 / ln(2) # reciprocal 
    arg_k = k
    arg_k = arg_k * (sm_scale * RCP_LN2)
    
    if min(chunk_size_q, chunk_size_k) >= 128:
        PRE_BLOCK = 128
    else:
        PRE_BLOCK = min(chunk_size_q, chunk_size_k)
        
    assert N_CTX % PRE_BLOCK == 0
    pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD)
    delta = torch.empty_like(M)
    _attn_bwd_preprocess[pre_grid](
        o, do,
        delta,
        N_CTX,
        BLOCK_M=PRE_BLOCK, 
        HEAD_DIM=HEAD_DIM
    )

    block_indices_k, block_indices_k_lens = create_indices_k_from_indices_q_varlen(
        block_indices=block_indices, 
        N_cols_mask=N_CTX_KV // chunk_size_k
    )
    
    block_indices = block_indices.contiguous()
    block_indices_lens = block_indices_lens.contiguous()
    block_indices_k = block_indices_k.contiguous()
    block_indices_k_lens = block_indices_k_lens.contiguous()

    config_key = 'BLOCK_N_DQ_LG=64' if chunk_size_k == 64 else 'default'
    kernel_config = {} if os.environ.get('TRITON_AUTOTUNE_ENBALE', '0') == '1' else configs_bwd_dkdv_bsa_varlen_preset[config_key]
    
    grid_dkdv = lambda args: (triton.cdiv(arg_k.shape[2], args["BLOCK_N"]), 1, arg_k.shape[0] * arg_k.shape[1])
    _attn_bwd_dkdv_bsa_varlen_wrapper[grid_dkdv](
        q, arg_k, v, sm_scale,  # softmax scale
        do,
        dk, dv,
        M, # lse (log2)
        delta,
        block_indices_k,
        block_indices_k_lens,
        q.stride(0), q.stride(1), q.stride(2), q.stride(3),
        k.stride(0), k.stride(1), k.stride(2), k.stride(3),
        v.stride(0), v.stride(1), v.stride(2), v.stride(3),
        dk.stride(0), dk.stride(1), dk.stride(2), dk.stride(3),
        dv.stride(0), dv.stride(1), dv.stride(2), dv.stride(3),
        do.stride(0), do.stride(1), do.stride(2), do.stride(3),
        M.stride(0), M.stride(1), M.stride(2),
        delta.stride(0), delta.stride(1), delta.stride(2),
        block_indices_k.stride(0), block_indices_k.stride(1), block_indices_k.stride(2), block_indices_k.stride(3), 
        block_indices_k_lens.stride(0), block_indices_k_lens.stride(1), block_indices_k_lens.stride(2), 
        N_HEAD, N_CTX,
        BLOCK_M=chunk_size_q,
        BLOCK_N_DQ_LG=chunk_size_k,
        HEAD_DIM=HEAD_DIM,
        SPARSITY=sparsity,
        **kernel_config
    )

    config_key = 'BLOCK_N_DQ_LG=64' if chunk_size_k == 64 else 'default'
    if chunk_size_k > 128:
        bwd_dq_func = _attn_bwd_dq_bsa_varlen_wrapper
        kernel_config = {} if os.environ.get('TRITON_AUTOTUNE_ENBALE', '0') == '1' else configs_bwd_dq_bsa_varlen_preset[config_key]
    else:
        bwd_dq_func = _attn_bwd_dq_bsa_varlen_align_wrapper
        kernel_config = {} if os.environ.get('TRITON_AUTOTUNE_ENBALE', '0') == '1' else configs_bwd_dq_bsa_varlen_align_preset[config_key]
        
    grid_dq = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), 1, q.shape[0] * q.shape[1])
    bwd_dq_func[grid_dq](
        q, arg_k, v,
        do, 
        dq,
        M, # lse (log2)
        delta,
        block_indices,
        block_indices_lens,
        q.stride(0), q.stride(1), q.stride(2), q.stride(3),
        k.stride(0), k.stride(1), k.stride(2), k.stride(3),
        v.stride(0), v.stride(1), v.stride(2), v.stride(3),
        dq.stride(0), dq.stride(1), dq.stride(2), dq.stride(3),
        do.stride(0), do.stride(1), do.stride(2), do.stride(3),
        M.stride(0), M.stride(1), M.stride(2),
        delta.stride(0), delta.stride(1), delta.stride(2),
        block_indices.stride(0), block_indices.stride(1), block_indices.stride(2), block_indices.stride(3),
        block_indices_lens.stride(0), block_indices_lens.stride(1), block_indices_lens.stride(2),
        N_HEAD, N_CTX,
        BLOCK_M=chunk_size_q, 
        BLOCK_N_DQ_LG=chunk_size_k,
        HEAD_DIM=HEAD_DIM,
        SPARSITY=sparsity,
        **kernel_config
    )    

@torch.compile
def make_block_indices_varlen_cp_list(block_indices, cp_size, num_blocks_k_full):
    """
    Args:
        block_indices: [B, H, num_blocks_q_per_cp_rank, num_blocks_k_full]
    
    Return:
        a list of [block_indices, block_indices_lens] for k from each cp_rank
            - each block_indices starts from zero
            - block_indices_lens indicates the valid number of elements in the last dimension of block_indices
    """
    res = []
    num_blocks_per_rank = num_blocks_k_full // cp_size
    for i in range(cp_size):
        block_indices_tmp = block_indices.clone()
        min_block_idx = i * num_blocks_per_rank
        block_indices_tmp -= min_block_idx
        block_indices_tmp[block_indices_tmp < 0] = num_blocks_per_rank # block_indices_tmp < 0 indicate invalid indices, set them to num_blocks_per_rank in order to sort them to the tail, so that the first N elements of the block_indices indicated by block_indices_lens are valid
        
        block_indices_tmp, _ = torch.sort(block_indices_tmp, dim=-1)
        
        block_indices_tmp_lens = (block_indices_tmp < num_blocks_per_rank).sum(dim=-1)
        
        res.append([block_indices_tmp, block_indices_tmp_lens])

    return res

@torch.compile
def flash_attn_fwd_softmax_lse_correction(
    softmax_lse: torch.Tensor, 
    softmax_lse_per_step: torch.Tensor,
):
    """Merge softmax stats of each step in Attention with context parallelism"""
    max_scale = torch.max(softmax_lse, softmax_lse_per_step)
    min_scale = torch.min(softmax_lse, softmax_lse_per_step)
    lse_diff = min_scale - max_scale
    lse_diff = lse_diff.nan_to_num(nan=0.) # handle cases: tensor(-inf) - tensor(-inf) = tensor(nan); In the current cp implementation, it is possible that lses of 2 cp ranks are both -inf, if no block is selected from both cp ranks. In such cases, the finally corrected lse should remain -inf.
    new_scale = max_scale + torch.log1p(torch.exp(lse_diff)) # a + ln(1 + e^(b - a)) = ln(e^a) + ln(1 + e^(b - a)) = ln(e^a + e^b)
    softmax_lse.copy_(new_scale)

@torch.compile
def flash_attn_fwd_out_correction_init(
    out_init_step: torch.Tensor, # b h s d
    softmax_lse: torch.Tensor, # b h s
    softmax_lse_init_step: torch.Tensor,
):
    """Merge partial outputs of the first step in Attention with context parallelism"""
    softmax_lse_corrected_exp = torch.exp(softmax_lse_init_step - softmax_lse)
    softmax_lse_corrected_exp = softmax_lse_corrected_exp.unsqueeze(-1)
    out_corrected = out_init_step * softmax_lse_corrected_exp
    return out_corrected.to(out_init_step.dtype)


@torch.compile
def flash_attn_fwd_out_correction(
    out: torch.Tensor,
    out_per_step: torch.Tensor,
    softmax_lse: torch.Tensor,
    softmax_lse_per_step: torch.Tensor,
):
    """Merge partial outputs of each step in Attention with context parallelism"""
    softmax_lse_corrected_exp = torch.exp(softmax_lse_per_step - softmax_lse)
    softmax_lse_corrected_exp = softmax_lse_corrected_exp.unsqueeze(-1)
    out_corrected = out_per_step * softmax_lse_corrected_exp
    out.add_(out_corrected)

@torch.compile
def topk_sort(score, num_chunks_selected):
    block_indices = torch.topk(score, num_chunks_selected)[1]
    block_indices, _ = torch.sort(block_indices, dim=-1)
    return block_indices

class _attention_bsa(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, chunk_size_q, chunk_size_k, sparsity, cdf_threshold, sm_scale, use_tma=False):
        # shape constraints
        HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1]
        # when v is in float8_e5m2 it is transposed.
        HEAD_DIM_V = v.shape[-1]
        assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V
        assert HEAD_DIM_K in {16, 32, 64, 128, 256}
        
        # ---------------------- gating ----------------------
        q_cmp = mean_pooling_compression(q, chunk_size_q)
        k_cmp = mean_pooling_compression(k, chunk_size_k)
        block_indices, block_indices_lens = get_select_indices(q_cmp, k_cmp, sparsity, cdf_threshold)

        # ---------------------- bsa ----------------------

        o, lse = attn_fwd_bsa_varlen_triton(
            q, k, v, 
            sm_scale, block_indices, block_indices_lens,
            chunk_size_q, chunk_size_k, 
            sparsity
        )

        ctx.save_for_backward(q, k, v, o, lse, block_indices, block_indices_lens)
        ctx.sm_scale = sm_scale
        ctx.HEAD_DIM = HEAD_DIM_K
        ctx.chunk_size_q = chunk_size_q
        ctx.chunk_size_k = chunk_size_k
        ctx.use_tma = use_tma
        ctx.sparsity = sparsity

        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse, block_indices, block_indices_lens = ctx.saved_tensors

        dq = torch.empty_like(q)
        dk = torch.empty_like(k)
        dv = torch.empty_like(v)

        attn_bwd_bsa_varlen_triton(
            do, 
            q, 
            k, 
            v, 
            o,
            dq,
            dk,
            dv,
            ctx.sm_scale, 
            lse, 
            block_indices, 
            block_indices_lens,
            ctx.chunk_size_q, 
            ctx.chunk_size_k,
            ctx.sparsity
        )

        return dq, dk, dv, None, None, None, None, None, None

flash_attn_bsa = _attention_bsa.apply

def rearrange_THW_to_3d_block(x, Nt, Nh, Nw, t, h, w, D):
    B, H, _, D = x.shape
    x = x.view(B, H, Nt, t, Nh, h, Nw, w, D)
    x = x.permute(0, 1, 2, 4, 6, 3, 5, 7, 8)  # B H Nt Nh Nw t h w D
    return x.contiguous().view(B, H, Nt * Nh * Nw * t * h * w, D)

def rearrange_3d_block_to_THW(x, Nt, Nh, Nw, t, h, w, D):
    B, H, _, D = x.shape
    x = x.view(B, H, Nt, Nh, Nw, t, h, w, D)
    x = x.permute(0, 1, 2, 5, 3, 6, 4, 7, 8)  # B H Nt t Nh h Nw w D
    return x.contiguous().view(B, H, Nt * t * Nh * h * Nw * w, D)

def flash_attn_bsa_3d(
    q: torch.Tensor, # [B, H, Sq, D]
    k: torch.Tensor, # [B, H, Skv, D]
    v: torch.Tensor, # [B, H, Skv, D]
    latent_shape_q,
    latent_shape_k,
    # bsa_params
    sparsity=0.875,
    cdf_threshold=None,
    chunk_3d_shape_q=[4, 4, 8],
    chunk_3d_shape_k=[4, 4, 8], 
) -> torch.Tensor:
    _, _, Sq, head_dim_q = q.shape
    _, _, Sk, head_dim_k = k.shape
    
    assert head_dim_q == head_dim_k
    head_dim = head_dim_q
    
    Tq, Hq, Wq = latent_shape_q
    Tk, Hk, Wk = latent_shape_k
    
    assert Tq * Hq * Wq == Sq
    assert Tk * Hk * Wk == Sk
    
    tq, hq, wq = chunk_3d_shape_q
    tk, hk, wk = chunk_3d_shape_k
    
    assert Tq % tq == 0 and Hq % hq == 0 and Wq % wq == 0
    assert Tk % tk == 0 and Hk % hk == 0 and Wk % wk == 0
    
    Ntq = Tq // tq
    Nhq = Hq // hq
    Nwq = Wq // wq

    Ntk = Tk // tk
    Nhk = Hk // hk
    Nwk = Wk // wk

    q = rearrange_THW_to_3d_block(q, Ntq, Nhq, Nwq, tq, hq, wq, q.shape[-1])
    k = rearrange_THW_to_3d_block(k, Ntk, Nhk, Nwk, tk, hk, wk, k.shape[-1])
    v = rearrange_THW_to_3d_block(v, Ntk, Nhk, Nwk, tk, hk, wk, v.shape[-1])

    chunk_size_q = tq * hq * wq
    chunk_size_k = tk * hk * wk

    output = flash_attn_bsa(q, k, v, chunk_size_q, chunk_size_k, sparsity, cdf_threshold, 1 / head_dim**0.5)

    output = rearrange_3d_block_to_THW(output, Ntq, Nhq, Nwq, tq, hq, wq, output.shape[-1])
    return output