benchmark_paged_attention.py 10.1 KB
Newer Older
laibao's avatar
laibao committed
1
2
import random
import time
laibao's avatar
laibao committed
3
from typing import List, Optional
laibao's avatar
laibao committed
4
5
6
7

import torch

from vllm import _custom_ops as ops
laibao's avatar
laibao committed
8
9
10
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
                        create_kv_caches_with_random, seed_everything)
import vllm.envs as envs
laibao's avatar
laibao committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

NUM_BLOCKS = 1024
PARTITION_SIZE = 512


@torch.inference_mode()
def main(
    version: str,
    num_seqs: int,
    seq_len: int,
    num_query_heads: int,
    num_kv_heads: int,
    head_size: int,
    use_alibi: bool,
    block_size: int,
    dtype: torch.dtype,
    seed: int,
    do_profile: bool,
    device: str = "cuda",
    kv_cache_dtype: Optional[str] = None,
) -> None:
laibao's avatar
laibao committed
32
    seed_everything(seed)
laibao's avatar
laibao committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

    scale = float(1.0 / (head_size**0.5))
    query = torch.empty(num_seqs,
                        num_query_heads,
                        head_size,
                        dtype=dtype,
                        device=device)
    query.uniform_(-scale, scale)

    assert num_query_heads % num_kv_heads == 0
    alibi_slopes = None
    if use_alibi:
        alibi_slopes = torch.randn(num_query_heads,
                                   dtype=torch.float,
                                   device=device)

    seq_lens = [seq_len for _ in range(num_seqs)]
    max_seq_len = max(seq_lens)
    seq_lens = torch.tensor(seq_lens, dtype=torch.int, device=device)

    # Create the block tables.
    max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
laibao's avatar
laibao committed
55
    block_tables_lst: List[List[int]] = []
laibao's avatar
laibao committed
56
57
58
59
60
    for _ in range(num_seqs):
        block_table = [
            random.randint(0, NUM_BLOCKS - 1)
            for _ in range(max_num_blocks_per_seq)
        ]
laibao's avatar
laibao committed
61
62
63
64
65
        block_tables_lst.append(block_table)

    block_tables = torch.tensor(block_tables_lst,
                                dtype=torch.int,
                                device=device)
laibao's avatar
laibao committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    # Create the KV cache.
    key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
                                                            block_size,
                                                            1,
                                                            num_kv_heads,
                                                            head_size,
                                                            kv_cache_dtype,
                                                            dtype,
                                                            device=device)
    key_cache, value_cache = key_caches[0], value_caches[0]

    # Prepare for the paged attention kernel.
    output = torch.empty_like(query)
    if version == "v2":
        num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
        tmp_output = torch.empty(
            size=(num_seqs, num_query_heads, num_partitions, head_size),
            dtype=output.dtype,
            device=output.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_query_heads, num_partitions),
            dtype=torch.float32,
            device=output.device,
        )
        max_logits = torch.empty_like(exp_sums)

    def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float:
        torch.cuda.synchronize()
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        start_time = time.perf_counter()

        # Using default kv_scale
laibao's avatar
laibao committed
101
        k_scale = v_scale = 1.0
laibao's avatar
laibao committed
102
103
104

        for _ in range(num_iters):
            if version == "v1":
laibao's avatar
laibao committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
                if envs.VLLM_USE_OPT_OP:
                    if envs.VLLM_USE_TC_PAGED_ATTN:
                        ops.paged_attention_v1_opt_tc(
                            output,
                            query,
                            key_cache,
                            value_cache,
                            num_kv_heads,
                            scale,
                            block_tables,
                            seq_lens,
                            block_size,
                            max_seq_len,
                            alibi_slopes,
                            kv_cache_dtype,
                            k_scale,
                            v_scale,
                        )
                    else:
                        ops.paged_attention_v1_opt(
                            output,
                            query,
                            key_cache,
                            value_cache,
                            num_kv_heads,
                            scale,
                            block_tables,
                            seq_lens,
                            block_size,
                            max_seq_len,
                            alibi_slopes,
                            kv_cache_dtype,
                            k_scale,
                            v_scale,
                        )
                else:
                    ops.paged_attention_v1(
laibao's avatar
laibao committed
142
143
144
145
146
147
148
149
150
151
152
153
                    output,
                    query,
                    key_cache,
                    value_cache,
                    num_kv_heads,
                    scale,
                    block_tables,
                    seq_lens,
                    block_size,
                    max_seq_len,
                    alibi_slopes,
                    kv_cache_dtype,
laibao's avatar
laibao committed
154
155
                    k_scale,
                    v_scale,
laibao's avatar
laibao committed
156
157
                )
            elif version == "v2":
laibao's avatar
laibao committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
                if envs.VLLM_USE_OPT_OP:
                    if envs.VLLM_USE_TC_PAGED_ATTN:
                        ops.paged_attention_v2_opt_tc(
                            output,
                            exp_sums,
                            max_logits,
                            tmp_output,
                            query,
                            key_cache,
                            value_cache,
                            num_kv_heads,
                            scale,
                            block_tables,
                            seq_lens,
                            block_size,
                            max_seq_len,
                            alibi_slopes,
                            kv_cache_dtype,
                            k_scale,
                            v_scale,
                        )
                    else:
                        ops.paged_attention_v2_opt(
                            output,
                            exp_sums,
                            max_logits,
                            tmp_output,
                            query,
                            key_cache,
                            value_cache,
                            num_kv_heads,
                            scale,
                            block_tables,
                            seq_lens,
                            block_size,
                            max_seq_len,
                            alibi_slopes,
                            kv_cache_dtype,
                            k_scale,
                            v_scale,
                        )
                else:
                    ops.paged_attention_v2(
laibao's avatar
laibao committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                    output,
                    exp_sums,
                    max_logits,
                    tmp_output,
                    query,
                    key_cache,
                    value_cache,
                    num_kv_heads,
                    scale,
                    block_tables,
                    seq_lens,
                    block_size,
                    max_seq_len,
                    alibi_slopes,
                    kv_cache_dtype,
laibao's avatar
laibao committed
216
217
                    k_scale,
                    v_scale,
laibao's avatar
laibao committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
                )
            else:
                raise ValueError(f"Invalid version: {version}")
        torch.cuda.synchronize()

        end_time = time.perf_counter()
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        return (end_time - start_time) / num_iters

    # Warmup.
    print("Warming up...")
    run_benchmark = run_cuda_benchmark
    run_benchmark(num_iters=3, profile=False)

    # Benchmark.
    if do_profile:
        latency = run_benchmark(num_iters=1, profile=True)
    else:
        latency = run_benchmark(num_iters=100, profile=False)
    print(f"Kernel running time: {latency * 1000000:.3f} us")


if __name__ == '__main__':
laibao's avatar
laibao committed
242
    parser = FlexibleArgumentParser(
laibao's avatar
laibao committed
243
244
245
246
247
248
        description="Benchmark the paged attention kernel.")
    parser.add_argument("--version",
                        type=str,
                        choices=["v1", "v2"],
                        default="v2")
    parser.add_argument("--batch-size", type=int, default=8)
laibao's avatar
laibao committed
249
    parser.add_argument("--seq-len", type=int, default=4096)
laibao's avatar
laibao committed
250
251
252
253
    parser.add_argument("--num-query-heads", type=int, default=64)
    parser.add_argument("--num-kv-heads", type=int, default=8)
    parser.add_argument("--head-size",
                        type=int,
laibao's avatar
laibao committed
254
                        choices=[64, 80, 96, 112, 120, 128, 192, 256],
laibao's avatar
laibao committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
                        default=128)
    parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
    parser.add_argument("--use-alibi", action="store_true")
    parser.add_argument("--dtype",
                        type=str,
                        choices=["half", "bfloat16", "float"],
                        default="half")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--profile", action="store_true")
    parser.add_argument(
        "--kv-cache-dtype",
        type=str,
        choices=["auto", "fp8", "fp8_e5m2", "fp8_e4m3"],
        default="auto",
        help="Data type for kv cache storage. If 'auto', will use model "
        "data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. "
laibao's avatar
laibao committed
271
        "ROCm (hcu) supports fp8 (=fp8_e4m3)")
laibao's avatar
laibao committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    args = parser.parse_args()
    print(args)

    if args.num_query_heads % args.num_kv_heads != 0:
        raise ValueError("num_query_heads must be divisible by num_kv_heads")
    main(
        version=args.version,
        num_seqs=args.batch_size,
        seq_len=args.seq_len,
        num_query_heads=args.num_query_heads,
        num_kv_heads=args.num_kv_heads,
        head_size=args.head_size,
        block_size=args.block_size,
        use_alibi=args.use_alibi,
        dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
        seed=args.seed,
        do_profile=args.profile,
        kv_cache_dtype=args.kv_cache_dtype,
    )