single_image.py 2.13 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle

from PIL import Image
import requests
import copy
import torch

import sys
import warnings
import os

from pathlib import Path

current_dir = str(Path(__file__).resolve().parent)

warnings.filterwarnings("ignore")
# pretrained = "lmms-lab/llava-onevision-qwen2-0.5b-si"
pretrained = os.path.join(current_dir, "ckpts", "llava-onevision-qwen2-0.5b-si")
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
llava_model_args = {
    "multimodal": True,
    "attn_implementation": "sdpa",
}
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map, **llava_model_args)  # Add any other thing you want to pass in llava_model_args

model.eval()

# url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
# image = Image.open(requests.get(url, stream=True).raw)
image = Image.open("./examples/llava_v1_5_radar.jpg")
image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]

conv_template = "qwen_1_5"  # Make sure you use correct chat template for different models
question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()

input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]


cont = model.generate(
    input_ids,
    images=image_tensor,
    image_sizes=image_sizes,
    do_sample=False,
    temperature=0,
    max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs)