inference_hf.py 1.29 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import requests
from PIL import Image

import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration

from pathlib import Path
import os


current_dir = str(Path(__file__).resolve().parent)

model_id = os.path.join(current_dir, "ckpts", "llava-interleave-qwen-0.5b-hf")

model = LlavaForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True, 
).to(0)

processor = AutoProcessor.from_pretrained(model_id)

# Define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image") 
conversation = [
    {

      "role": "user",
      "content": [
          {"type": "text", "text": "What are these?"},
          {"type": "image"},
        ],
    },
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

# image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
# raw_image = Image.open(requests.get(image_file, stream=True).raw)
raw_image = Image.open("./examples/cat.jpg")
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)

output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))