profiling.py 3.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

import argparse
import dataclasses
import os
import time

import numpy as np
import torch_xla.debug.profiler as xp
from tqdm import tqdm

from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.inputs import PromptType
from vllm.utils import FlexibleArgumentParser

DURATION_MS = int(os.getenv("VLLM_TPU_PROFILE_DURATION_MS", 3000))
DELAY_MS = int(os.getenv("VLLM_TPU_PROFILE_DELAY_MS", 0))


def main(args: argparse.Namespace):
    print(args)

    engine_args = EngineArgs.from_cli_args(args)
    llm = LLM(**dataclasses.asdict(engine_args))
    server = xp.start_server(9012)  # noqa: F841

    sampling_params = SamplingParams(
        temperature=0.0,
        ignore_eos=True,
        max_tokens=args.output_len,
    )
    print(sampling_params)
    dummy_prompt_token_ids = np.random.randint(
        10000, size=(args.batch_size, args.input_len)
    )
    dummy_prompts: list[PromptType] = [
        {"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()
    ]

    def run_to_completion():
        start_time = time.perf_counter()
        llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False)
        end_time = time.perf_counter()
        latency = end_time - start_time
        return latency

    # Warmup
    print("Warming up...")
    warmup_latencies = []
    for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
        warmup_latencies.append(run_to_completion())
    print(f"Average warmup latency: {np.mean(warmup_latencies):.4f}s")

    # Profile
    profile_dir = args.profile_result_dir
    print(f"Profiling (results will be saved to '{profile_dir}')...")
    # Enable tracing on server
    xp.trace_detached(
        "localhost:9012", profile_dir, delay_ms=DELAY_MS, duration_ms=DURATION_MS
    )
    if DELAY_MS == 0:
        time.sleep(1.0)
    profile_latencies = []
    for _ in tqdm(range(args.num_iters), desc="Profile iterations"):
        profile_latencies.append(run_to_completion())
    print(f"Average profile latency: {np.mean(profile_latencies):.4f}s")

    return


def parse_args():
    parser = FlexibleArgumentParser(
        description="Benchmark the latency of processing a single batch of "
        "requests till completion."
    )
    parser.add_argument("--input-len", type=int, default=32)
    parser.add_argument("--output-len", type=int, default=128)
    parser.add_argument("--batch-size", type=int, default=8)
    parser.add_argument(
        "--num-iters-warmup",
        type=int,
        default=5,
        help="Number of iterations to run for warmup.",
    )
    parser.add_argument(
        "--num-iters",
        type=int,
        default=1,
        help="Number of iterations to run for profiling.",
    )
    parser.add_argument(
        "--profile-result-dir",
        type=str,
        default="profiles",
        help=(
            "path to save the pytorch profiler output. Can be visualized "
            "with ui.perfetto.dev or Tensorboard "
            "(https://cloud.google.com/tpu/docs/pytorch-xla-performance-profiling-tpu-vm)."
        ),
    )

    parser = EngineArgs.add_cli_args(parser)
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    main(args)