encoder_decoder_multimodal.py 5.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This example shows how to use vLLM for running offline inference with
the explicit/implicit prompt format on enc-dec LMMs for text generation.
"""

import time
from collections.abc import Sequence
from dataclasses import asdict
from typing import NamedTuple

from vllm import LLM, EngineArgs, PromptType, SamplingParams
from vllm.assets.audio import AudioAsset
from vllm.assets.image import ImageAsset
from vllm.utils import FlexibleArgumentParser


class ModelRequestData(NamedTuple):
    engine_args: EngineArgs
    prompts: Sequence[PromptType]


def run_florence2():
    engine_args = EngineArgs(
        model="microsoft/Florence-2-large",
        tokenizer="Isotr0py/Florence-2-tokenizer",
        max_num_seqs=8,
        trust_remote_code=True,
        limit_mm_per_prompt={"image": 1},
        dtype="half",
    )

    prompts = [
        {  # implicit prompt with task token
            "prompt": "<DETAILED_CAPTION>",
            "multi_modal_data": {"image": ImageAsset("stop_sign").pil_image},
        },
        {  # explicit encoder/decoder prompt
            "encoder_prompt": {
                "prompt": "Describe in detail what is shown in the image.",
                "multi_modal_data": {"image": ImageAsset("cherry_blossom").pil_image},
            },
            "decoder_prompt": "",
        },
    ]

    return ModelRequestData(
        engine_args=engine_args,
        prompts=prompts,
    )


def run_mllama():
    engine_args = EngineArgs(
        model="meta-llama/Llama-3.2-11B-Vision-Instruct",
        max_model_len=8192,
        max_num_seqs=2,
        limit_mm_per_prompt={"image": 1},
        dtype="half",
    )

    prompts = [
        {  # Implicit prompt
            "prompt": "<|image|><|begin_of_text|>What is the content of this image?",  # noqa: E501
            "multi_modal_data": {
                "image": ImageAsset("stop_sign").pil_image,
            },
        },
        {  # Explicit prompt
            "encoder_prompt": {
                "prompt": "<|image|>",
                "multi_modal_data": {
                    "image": ImageAsset("stop_sign").pil_image,
                },
            },
            "decoder_prompt": "<|image|><|begin_of_text|>Please describe the image.",  # noqa: E501
        },
    ]

    return ModelRequestData(
        engine_args=engine_args,
        prompts=prompts,
    )


def run_whisper():
    engine_args = EngineArgs(
        model="openai/whisper-large-v3-turbo",
        max_model_len=448,
        max_num_seqs=16,
        limit_mm_per_prompt={"audio": 1},
        dtype="half",
    )

    prompts = [
        {  # Test implicit prompt
            "prompt": "<|startoftranscript|>",
            "multi_modal_data": {
                "audio": AudioAsset("mary_had_lamb").audio_and_sample_rate,
            },
        },
        {  # Test explicit encoder/decoder prompt
            "encoder_prompt": {
                "prompt": "",
                "multi_modal_data": {
                    "audio": AudioAsset("winning_call").audio_and_sample_rate,
                },
            },
            "decoder_prompt": "<|startoftranscript|>",
        },
    ]

    return ModelRequestData(
        engine_args=engine_args,
        prompts=prompts,
    )


model_example_map = {
    "florence2": run_florence2,
    "mllama": run_mllama,
    "whisper": run_whisper,
}


def parse_args():
    parser = FlexibleArgumentParser(
        description="Demo on using vLLM for offline inference with "
        "vision language models for text generation"
    )
    parser.add_argument(
        "--model-type",
        "-m",
        type=str,
        default="mllama",
        choices=model_example_map.keys(),
        help='Huggingface "model_type".',
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=None,
        help="Set the seed when initializing `vllm.LLM`.",
    )
    return parser.parse_args()


def main(args):
    model = args.model_type
    if model not in model_example_map:
        raise ValueError(f"Model type {model} is not supported.")

    req_data = model_example_map[model]()

    # Disable other modalities to save memory
    default_limits = {"image": 0, "video": 0, "audio": 0}
    req_data.engine_args.limit_mm_per_prompt = default_limits | dict(
        req_data.engine_args.limit_mm_per_prompt or {}
    )

    engine_args = asdict(req_data.engine_args) | {"seed": args.seed}
    llm = LLM(**engine_args)

    prompts = req_data.prompts

    # Create a sampling params object.
    sampling_params = SamplingParams(
        temperature=0,
        top_p=1.0,
        max_tokens=64,
        skip_special_tokens=False,
    )

    start = time.time()

    # Generate output tokens from the prompts. The output is a list of
    # RequestOutput objects that contain the prompt, generated
    # text, and other information.
    outputs = llm.generate(prompts, sampling_params)

    # Print the outputs.
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"Decoder prompt: {prompt!r}, Generated text: {generated_text!r}")

    duration = time.time() - start

    print("Duration:", duration)
    print("RPS:", len(prompts) / duration)


if __name__ == "__main__":
    args = parse_args()
    main(args)