data_parallel.py 6.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Usage:
Single node:
    python examples/offline_inference/data_parallel.py \
            --model="ibm-research/PowerMoE-3b" \
            --dp-size=2 \
            --tp-size=2

Multi-node:
    Node 0 (assume the node has ip of 10.99.48.128):
            python examples/offline_inference/data_parallel.py \
                    --model="ibm-research/PowerMoE-3b" \
                    --dp-size=2 \
                    --tp-size=2 \
                    --node-size=2 \
                    --node-rank=0 \
                    --master-addr=10.99.48.128 \
                    --master-port=13345
    Node 1:
            python examples/offline_inference/data_parallel.py \
                    --model="ibm-research/PowerMoE-3b" \
                    --dp-size=2 \
                    --tp-size=2 \
                    --node-size=2 \
                    --node-rank=1 \
                    --master-addr=10.99.48.128 \
                    --master-port=13345
"""

import os
from time import sleep

from vllm import LLM, SamplingParams
from vllm.utils import get_open_port


def parse_args():
    import argparse

    parser = argparse.ArgumentParser(description="Data Parallel Inference")
    parser.add_argument(
        "--model",
        type=str,
        default="ibm-research/PowerMoE-3b",
        help="Model name or path",
    )
    parser.add_argument("--dp-size", type=int, default=2, help="Data parallel size")
    parser.add_argument("--tp-size", type=int, default=2, help="Tensor parallel size")
    parser.add_argument(
        "--node-size", type=int, default=1, help="Total number of nodes"
    )
    parser.add_argument(
        "--node-rank", type=int, default=0, help="Rank of the current node"
    )
    parser.add_argument(
        "--master-addr", type=str, default="", help="Master node IP address"
    )
    parser.add_argument("--master-port", type=int, default=0, help="Master node port")
    parser.add_argument(
        "--enforce-eager", action="store_true", help="Enforce eager mode execution."
    )
    parser.add_argument(
        "--trust-remote-code", action="store_true", help="Trust remote code."
    )
    parser.add_argument(
        "--max-num-seqs",
        type=int,
        default=64,
        help=("Maximum number of sequences to be processed in a single iteration."),
    )
    parser.add_argument(
        "--gpu-memory-utilization",
        type=float,
        default=0.8,
        help=("Fraction of GPU memory vLLM is allowed to allocate (0.0, 1.0]."),
    )
    return parser.parse_args()


def main(
    model,
    dp_size,
    local_dp_rank,
    global_dp_rank,
    dp_master_ip,
    dp_master_port,
    GPUs_per_dp_rank,
    enforce_eager,
    trust_remote_code,
    max_num_seqs,
    gpu_memory_utilization,
):
    os.environ["VLLM_DP_RANK"] = str(global_dp_rank)
    os.environ["VLLM_DP_RANK_LOCAL"] = str(local_dp_rank)
    os.environ["VLLM_DP_SIZE"] = str(dp_size)
    os.environ["VLLM_DP_MASTER_IP"] = dp_master_ip
    os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)

    # CUDA_VISIBLE_DEVICES for each DP rank is set automatically inside the
    # engine processes.

    # Sample prompts.
    prompts = [
        "Hello, my name is",
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ] * 100

    # with DP, each rank should process different prompts.
    # usually all the DP ranks process a full dataset,
    # and each rank processes a different part of the dataset.
    floor = len(prompts) // dp_size
    remainder = len(prompts) % dp_size

    # Distribute prompts into even groups.
    def start(rank):
        return rank * floor + min(rank, remainder)

    prompts = prompts[start(global_dp_rank) : start(global_dp_rank + 1)]
    if len(prompts) == 0:
        # if any rank has no prompts to process,
        # we need to set a placeholder prompt
        prompts = ["Placeholder"]
    print(f"DP rank {global_dp_rank} needs to process {len(prompts)} prompts")

    # Create a sampling params object.
    # since we are doing data parallel, every rank can have different
    # sampling params. here we set different max_tokens for different
    # ranks for demonstration.
    sampling_params = SamplingParams(
        temperature=0.8, top_p=0.95, max_tokens=[16, 20][global_dp_rank % 2]
    )

    # Create an LLM.
    llm = LLM(
        model=model,
        tensor_parallel_size=GPUs_per_dp_rank,
        enforce_eager=enforce_eager,
        enable_expert_parallel=True,
        trust_remote_code=trust_remote_code,
        max_num_seqs=max_num_seqs,
        gpu_memory_utilization=gpu_memory_utilization,
    )
    outputs = llm.generate(prompts, sampling_params)
    # Print the outputs.
    for i, output in enumerate(outputs):
        if i >= 5:
            # print only 5 outputs
            break
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(
            f"DP rank {global_dp_rank}, Prompt: {prompt!r}, "
            f"Generated text: {generated_text!r}"
        )

    # Give engines time to pause their processing loops before exiting.
    sleep(1)


if __name__ == "__main__":
    args = parse_args()

    dp_size = args.dp_size
    tp_size = args.tp_size
    node_size = args.node_size
    node_rank = args.node_rank

    if node_size == 1:
        dp_master_ip = "127.0.0.1"
        dp_master_port = get_open_port()
    else:
        dp_master_ip = args.master_addr
        dp_master_port = args.master_port

    assert dp_size % node_size == 0, "dp_size should be divisible by node_size"
    dp_per_node = dp_size // node_size

    from multiprocessing import Process

    procs = []
    for local_dp_rank, global_dp_rank in enumerate(
        range(node_rank * dp_per_node, (node_rank + 1) * dp_per_node)
    ):
        proc = Process(
            target=main,
            args=(
                args.model,
                dp_size,
                local_dp_rank,
                global_dp_rank,
                dp_master_ip,
                dp_master_port,
                tp_size,
                args.enforce_eager,
                args.trust_remote_code,
                args.max_num_seqs,
                args.gpu_memory_utilization,
            ),
        )
        proc.start()
        procs.append(proc)
    exit_code = 0
    for proc in procs:
        proc.join(timeout=300)
        if proc.exitcode is None:
            print(f"Killing process {proc.pid} that didn't stop within 5 minutes.")
            proc.kill()
            exit_code = 1
        elif proc.exitcode:
            exit_code = proc.exitcode

    exit(exit_code)