audio_language.py 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This example shows how to use vLLM for running offline inference
with the correct prompt format on audio language models.

For most models, the prompt format should follow corresponding examples
on HuggingFace model repository.
"""

import os
from dataclasses import asdict
from typing import NamedTuple, Optional

from huggingface_hub import snapshot_download
from transformers import AutoTokenizer

from vllm import LLM, EngineArgs, SamplingParams
from vllm.assets.audio import AudioAsset
from vllm.lora.request import LoRARequest
from vllm.utils import FlexibleArgumentParser

audio_assets = [AudioAsset("mary_had_lamb"), AudioAsset("winning_call")]
question_per_audio_count = {
    0: "What is 1+1?",
    1: "What is recited in the audio?",
    2: "What sport and what nursery rhyme are referenced?",
}


class ModelRequestData(NamedTuple):
    engine_args: EngineArgs
    prompt: str
    stop_token_ids: Optional[list[int]] = None
    lora_requests: Optional[list[LoRARequest]] = None


# NOTE: The default `max_num_seqs` and `max_model_len` may result in OOM on
# lower-end GPUs.
# Unless specified, these settings have been tested to work on a single L4.


# Granite Speech
def run_granite_speech(question: str, audio_count: int) -> ModelRequestData:
    # NOTE - the setting in this example are somehat different than what is
    # optimal for granite speech, and it is generally recommended to use beam
    # search. Check the model README for suggested settings.
    # https://huggingface.co/ibm-granite/granite-speech-3.3-8b
    model_name = "ibm-granite/granite-speech-3.3-8b"

    engine_args = EngineArgs(
        model=model_name,
        trust_remote_code=True,
        max_model_len=2048,
        max_num_seqs=2,
        enable_lora=True,
        max_lora_rank=64,
        limit_mm_per_prompt={"audio": audio_count},
    )

    # The model has an audio-specific lora directly in its model dir;
    # it should be enabled whenever you pass audio inputs to the model.
    speech_lora_path = model_name
    audio_placeholder = "<|audio|>" * audio_count
    prompts = f"<|start_of_role|>system<|end_of_role|>Knowledge Cutoff Date: April 2024.\nToday's Date: December 19, 2024.\nYou are Granite, developed by IBM. You are a helpful AI assistant<|end_of_text|>\n<|start_of_role|>user<|end_of_role|>{audio_placeholder}{question}<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>"  # noqa: E501

    return ModelRequestData(
        engine_args=engine_args,
        prompt=prompts,
        lora_requests=[LoRARequest("speech", 1, speech_lora_path)],
    )


# MiniCPM-O
def run_minicpmo(question: str, audio_count: int) -> ModelRequestData:
    model_name = "openbmb/MiniCPM-o-2_6"
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    engine_args = EngineArgs(
        model=model_name,
        trust_remote_code=True,
        max_model_len=4096,
        max_num_seqs=2,
        limit_mm_per_prompt={"audio": audio_count},
    )

    stop_tokens = ["<|im_end|>", "<|endoftext|>"]
    stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]

    audio_placeholder = "(<audio>./</audio>)" * audio_count
    audio_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}"  # noqa: E501
    messages = [{"role": "user", "content": f"{audio_placeholder}\n{question}"}]
    prompt = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
        chat_template=audio_chat_template,
    )

    return ModelRequestData(
        engine_args=engine_args,
        prompt=prompt,
        stop_token_ids=stop_token_ids,
    )


# Phi-4-multimodal-instruct
def run_phi4mm(question: str, audio_count: int) -> ModelRequestData:
    """
    Phi-4-multimodal-instruct supports both image and audio inputs. Here, we
    show how to process audio inputs.
    """
    model_path = snapshot_download("microsoft/Phi-4-multimodal-instruct")
    # Since the vision-lora and speech-lora co-exist with the base model,
    # we have to manually specify the path of the lora weights.
    speech_lora_path = os.path.join(model_path, "speech-lora")
    placeholders = "".join([f"<|audio_{i + 1}|>" for i in range(audio_count)])

    prompts = f"<|user|>{placeholders}{question}<|end|><|assistant|>"

    engine_args = EngineArgs(
        model=model_path,
        trust_remote_code=True,
        max_model_len=12800,
        max_num_seqs=2,
        enable_lora=True,
        max_lora_rank=320,
        limit_mm_per_prompt={"audio": audio_count},
    )

    return ModelRequestData(
        engine_args=engine_args,
        prompt=prompts,
        lora_requests=[LoRARequest("speech", 1, speech_lora_path)],
    )


# Qwen2-Audio
def run_qwen2_audio(question: str, audio_count: int) -> ModelRequestData:
    model_name = "Qwen/Qwen2-Audio-7B-Instruct"

    engine_args = EngineArgs(
        model=model_name,
        max_model_len=4096,
        max_num_seqs=5,
        limit_mm_per_prompt={"audio": audio_count},
    )

    audio_in_prompt = "".join(
        [
            f"Audio {idx + 1}: <|audio_bos|><|AUDIO|><|audio_eos|>\n"
            for idx in range(audio_count)
        ]
    )

    prompt = (
        "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
        "<|im_start|>user\n"
        f"{audio_in_prompt}{question}<|im_end|>\n"
        "<|im_start|>assistant\n"
    )

    return ModelRequestData(
        engine_args=engine_args,
        prompt=prompt,
    )


# Qwen2.5-Omni
def run_qwen2_5_omni(question: str, audio_count: int):
    model_name = "Qwen/Qwen2.5-Omni-7B"

    engine_args = EngineArgs(
        model=model_name,
        max_model_len=4096,
        max_num_seqs=5,
        limit_mm_per_prompt={"audio": audio_count},
    )

    audio_in_prompt = "".join(
        ["<|audio_bos|><|AUDIO|><|audio_eos|>\n" for idx in range(audio_count)]
    )

    default_system = (
        "You are Qwen, a virtual human developed by the Qwen Team, Alibaba "
        "Group, capable of perceiving auditory and visual inputs, as well as "
        "generating text and speech."
    )

    prompt = (
        f"<|im_start|>system\n{default_system}<|im_end|>\n"
        "<|im_start|>user\n"
        f"{audio_in_prompt}{question}<|im_end|>\n"
        "<|im_start|>assistant\n"
    )
    return ModelRequestData(
        engine_args=engine_args,
        prompt=prompt,
    )


# Ultravox 0.5-1B
def run_ultravox(question: str, audio_count: int) -> ModelRequestData:
    model_name = "fixie-ai/ultravox-v0_5-llama-3_2-1b"

    tokenizer = AutoTokenizer.from_pretrained(model_name)
    messages = [{"role": "user", "content": "<|audio|>\n" * audio_count + question}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

    engine_args = EngineArgs(
        model=model_name,
        max_model_len=4096,
        max_num_seqs=5,
        trust_remote_code=True,
        limit_mm_per_prompt={"audio": audio_count},
    )

    return ModelRequestData(
        engine_args=engine_args,
        prompt=prompt,
    )


# Whisper
def run_whisper(question: str, audio_count: int) -> ModelRequestData:
    assert audio_count == 1, "Whisper only support single audio input per prompt"
    model_name = "openai/whisper-large-v3-turbo"

    prompt = "<|startoftranscript|>"

    engine_args = EngineArgs(
        model=model_name,
        max_model_len=448,
        max_num_seqs=5,
        limit_mm_per_prompt={"audio": audio_count},
    )

    return ModelRequestData(
        engine_args=engine_args,
        prompt=prompt,
    )


model_example_map = {
    "granite_speech": run_granite_speech,
    "minicpmo": run_minicpmo,
    "phi4_mm": run_phi4mm,
    "qwen2_audio": run_qwen2_audio,
    "qwen2_5_omni": run_qwen2_5_omni,
    "ultravox": run_ultravox,
    "whisper": run_whisper,
}


def parse_args():
    parser = FlexibleArgumentParser(
        description="Demo on using vLLM for offline inference with "
        "audio language models"
    )
    parser.add_argument(
        "--model-type",
        "-m",
        type=str,
        default="ultravox",
        choices=model_example_map.keys(),
        help='Huggingface "model_type".',
    )
    parser.add_argument(
        "--num-prompts", type=int, default=1, help="Number of prompts to run."
    )
    parser.add_argument(
        "--num-audios",
        type=int,
        default=1,
        choices=[0, 1, 2],
        help="Number of audio items per prompt.",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=None,
        help="Set the seed when initializing `vllm.LLM`.",
    )

    return parser.parse_args()


def main(args):
    model = args.model_type
    if model not in model_example_map:
        raise ValueError(f"Model type {model} is not supported.")

    audio_count = args.num_audios
    req_data = model_example_map[model](
        question_per_audio_count[audio_count], audio_count
    )

    # Disable other modalities to save memory
    default_limits = {"image": 0, "video": 0, "audio": 0}
    req_data.engine_args.limit_mm_per_prompt = default_limits | dict(
        req_data.engine_args.limit_mm_per_prompt or {}
    )

    engine_args = asdict(req_data.engine_args) | {"seed": args.seed}
    llm = LLM(**engine_args)

    # We set temperature to 0.2 so that outputs can be different
    # even when all prompts are identical when running batch inference.
    sampling_params = SamplingParams(
        temperature=0.2, max_tokens=64, stop_token_ids=req_data.stop_token_ids
    )

    mm_data = {}
    if audio_count > 0:
        mm_data = {
            "audio": [
                asset.audio_and_sample_rate for asset in audio_assets[:audio_count]
            ]
        }

    assert args.num_prompts > 0
    inputs = {"prompt": req_data.prompt, "multi_modal_data": mm_data}
    if args.num_prompts > 1:
        # Batch inference
        inputs = [inputs] * args.num_prompts
    # Add LoRA request if applicable
    lora_request = (
        req_data.lora_requests * args.num_prompts if req_data.lora_requests else None
    )

    outputs = llm.generate(
        inputs,
        sampling_params=sampling_params,
        lora_request=lora_request,
    )

    for o in outputs:
        generated_text = o.outputs[0].text
        print(generated_text)


if __name__ == "__main__":
    args = parse_args()
    main(args)