test_triton_decode_attention.py 8.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# SPDX-License-Identifier: Apache-2.0

import os
import json
import pytest
import torch
import triton
from triton_decode_attention import decode_attentionv1_fwd, decode_attentionv2_fwd

def cdiv(a, b):
    return (a + b - 1) // b


@pytest.mark.parametrize("B", [1])
# @pytest.mark.parametrize("L", [100])
@pytest.mark.parametrize("L", [1,100,400,700,1000,1300,1600,1900,2200,2500,2800,3100,3400,3700,4000,4300,4600,4900,5000,5500,6000,6500,7000,7500,8000,8500,9000,9500,10000,10500,11000,11500,12000,12500,13000,13500,14000,14500,15000,15500,16000,16500,17000,17500,18000,18500,19000,19500,20000,20500,21000,21500,22000,22500,23000,23500,24000,24500,25000,25500,26000,26500,27000,27500,28000,28500,29000,29500,30000,30500,31000,31500,32000,32500])
@pytest.mark.parametrize("H_Q", [4, 8, 16])
@pytest.mark.parametrize("H_KV", [1])
@pytest.mark.parametrize("D_QK", [576])
@pytest.mark.parametrize("D_V", [512])
@pytest.mark.parametrize("CACHE_SIZE", [16384])
@pytest.mark.parametrize("PAGE_SIZE", [16]) 

def test_decode_attention(B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE):
    assert CACHE_SIZE % PAGE_SIZE == 0
    dtype = torch.bfloat16
    seq_len = L  # This represents the number of tokens already in the sequence
    sm_scale = 1.0 / (D_QK**0.5)
    num_kv_splits = 4

    num_pages_per_batch = cdiv(seq_len, PAGE_SIZE) #这里为向上取整,65,(1027+16-1)//16
    req_to_page = torch.randint(0,
                                CACHE_SIZE // PAGE_SIZE,
                                (B, num_pages_per_batch, 1), #shape为(B, num_pages_per_batch, 1)的tensor,大小取值为0 至cache_size//page_size
                                device="cuda")
    req_to_token = req_to_page * PAGE_SIZE
    req_to_token = req_to_token.expand(B, num_pages_per_batch, PAGE_SIZE) 
    req_to_token = req_to_token + torch.arange(PAGE_SIZE, device="cuda").view(
        1, 1, -1)
    req_to_token = req_to_token.view(B, -1)
    req_to_token = req_to_token[:, :seq_len].contiguous()


    # q represents the new token being generated, one per batch
    q = torch.randn(B, H_Q, D_QK, dtype=dtype, device="cuda")

    # k_buffer and v_buffer represent all previous tokens
    # Page size is 1.
    k_buffer = torch.randn(CACHE_SIZE, H_KV, D_QK, dtype=dtype, device="cuda")
    v_buffer = torch.randn(CACHE_SIZE, H_KV, D_V, dtype=dtype, device="cuda")

    # o will have the same shape as q
    o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")

    b_seq_len = torch.full((B, ), seq_len, device="cuda")
    attn_logits = torch.empty(
        (B, H_Q, num_kv_splits, D_V + 1),
        dtype=torch.float32,
        device="cuda",
    )
    b_req_idx = torch.arange(B, device="cuda").to(torch.int32)
    # Call the original implementation.
    decode_attentionv2_fwd(
        q,
        k_buffer,
        v_buffer,
        o,
        req_to_token,
        b_seq_len,
        attn_logits,
        num_kv_splits,
        sm_scale,
    )


    # Page size can be larger than 1.
    k_buffer = k_buffer.view(CACHE_SIZE // PAGE_SIZE, PAGE_SIZE, H_KV, D_QK)
    v_buffer = v_buffer.view(CACHE_SIZE // PAGE_SIZE, PAGE_SIZE, H_KV, D_V)

    o1 = torch.zeros_like(o)
    configs = {
                  "v2_tc": {"stage1": {}, "stage2": {}},
                  "v1_2stages_tc": {"stage1": {}, "stage2": {}},
              }
    ms = {
         "v1_2stages_tc": 10000.0,
         "v2_tc": 10000.0,
     }
    final_best_config = {
                            "kernel_kind": "",
                            "best_config": {},
                            "best_us": 0.0,
                        }
    v2_tc_stage1_best_config, v2_tc_stage2_best_config = decode_attentionv2_fwd(
        q,
        k_buffer,
        v_buffer,
        o1,
        req_to_page,
        b_seq_len,
        attn_logits,
        num_kv_splits,
        sm_scale,
        PAGE_SIZE,
    )
    assert torch.allclose(o, o1, atol=1e-2, rtol=1e-2)
    quantiles = [0.5, 0.2, 0.8]
    v2_tc_ms, v2_tc_min_ms, v2_tc_max_ms = triton.testing.do_bench(lambda:
    decode_attentionv2_fwd(
        q,
        k_buffer,
        v_buffer,
        o1,
        req_to_page,
        b_seq_len,
        attn_logits,
        num_kv_splits,
        sm_scale,
        PAGE_SIZE,

    ), quantiles=quantiles)
    for key, value in v2_tc_stage1_best_config.kwargs.items():
        configs["v2_tc"]["stage1"][key] = value
    configs["v2_tc"]["stage1"]["num_stages"] = v2_tc_stage1_best_config.num_stages
    configs["v2_tc"]["stage1"]["num_warps"] = v2_tc_stage1_best_config.num_warps
    for key, value in v2_tc_stage2_best_config.kwargs.items():
        configs["v2_tc"]["stage2"][key] = value
    configs["v2_tc"]["stage2"]["num_stages"] = v2_tc_stage2_best_config.num_stages
    configs["v2_tc"]["stage2"]["num_warps"]  = v2_tc_stage2_best_config.num_warps
    ms["v2_tc"] = v2_tc_ms
    print(f"v2_tc best configs is {configs['v2_tc']}")
    print("print mla decode attention v2 kernel [B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE] min cost :",[B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE], v2_tc_ms)
    o2 = torch.zeros_like(o)

    v1_tc_stage1_best_config, v1_tc_stage2_best_config = decode_attentionv1_fwd(
        q,
        k_buffer,
        v_buffer,
        o2,
        req_to_page,
        b_seq_len,
        attn_logits,
        num_kv_splits,
        sm_scale,
        PAGE_SIZE,
    )
    assert torch.allclose(o, o2, atol=1e-2, rtol=1e-2)
    
    v1_tc_ms, v1_tc_min_ms, v1_tc_max_ms = triton.testing.do_bench(lambda:
    decode_attentionv1_fwd(
        q,
        k_buffer,
        v_buffer,
        o1,
        req_to_page,
        b_seq_len,
        attn_logits,
        num_kv_splits,
        sm_scale,
        PAGE_SIZE,

    ), quantiles=quantiles)
    for key, value in v1_tc_stage1_best_config.kwargs.items():
        configs["v1_2stages_tc"]["stage1"][key] = value
    configs["v1_2stages_tc"]["stage1"]["num_stages"] = v1_tc_stage1_best_config.num_stages
    configs["v1_2stages_tc"]["stage1"]["num_warps"] = v1_tc_stage1_best_config.num_warps
    configs["v1_2stages_tc"]["stage1"]["num_ldmatrixes"] = v1_tc_stage1_best_config.num_ldmatrixes
    for key, value in v1_tc_stage2_best_config.kwargs.items():
        configs["v1_2stages_tc"]["stage2"][key] = value
    configs["v1_2stages_tc"]["stage2"]["num_stages"] = v1_tc_stage2_best_config.num_stages
    configs["v1_2stages_tc"]["stage2"]["num_warps"]  = v1_tc_stage2_best_config.num_warps
    configs["v1_2stages_tc"]["stage2"]["num_ldmatrixes"] = v1_tc_stage1_best_config.num_ldmatrixes
    ms["v1_2stages_tc"] = v1_tc_ms 
    min_key, min_ms = min(ms.items(), key=lambda x: x[1])
    final_best_config["kernel_kind"] = min_key
    final_best_config["best_config"] = configs[min_key]
    final_best_config["best_us"] = min_ms * 1000
    print(f"v1_2stages_tc best configs is {configs['v1_2stages_tc']}")

    print("print mla decode attention v1 kernel [B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE] min cost :",[B, L, H_Q, H_KV, D_QK, D_V, CACHE_SIZE, PAGE_SIZE], v1_tc_ms)
    print(f"Tuned_decode_attention choose {min_key} kernel, min cost {min_ms} ms, best config of {min_key} kernel is {configs[min_key]}")
    assert torch.allclose(o, o2, atol=1e-2, rtol=1e-2)


    #**************save config**************#
    batch = b_req_idx.shape[0]
    mean_seq_len = int((b_seq_len.sum() / max(1, batch)).item())

    device_name = torch.cuda.get_device_name().replace(" ", "_")
    if "K100_AI" in device_name:
        # return f"QH={QH}_KVH={KVH}_QKD={QKD}_VD={VD}_{cache_dtype}_K100AI.json"
        file_name = f"QH={H_Q}_KVH={H_KV}_QKD={D_QK}_VD={D_V}_fp16_K100AI.json"
    elif "BW" in device_name:
        # return f"QH={QH}_KVH={KVH}_QKD={QKD}_VD={VD}_{cache_dtype}_BW.json"
        file_name = f"QH={H_Q}_KVH={H_KV}_QKD={D_QK}_VD={D_V}_fp16_BW.json"
    else:
        raise ValueError(f"Unsurpport device name: {device_name}")
    if os.path.exists(file_name):
        with open(file_name, 'r') as file:
            config_info = json.load(file)
    else:
        config_info = {}

    # 如果 config_info 中没有当前的 batch,初始化它为一个空字典
    # if f"{batch}" not in config_info:
    #     config_info[f"{batch}"] = {}

    # 把新的 mean_seq_len 配置加入到当前 batch 中
    # config_info[f"{batch}"][f"{mean_seq_len}"] = final_best_config
    config_info[f"{mean_seq_len}"] = final_best_config

    # 保存最佳配置
    with open(file_name, 'w') as file:
        json.dump(config_info, file, indent=1)
    #**************save config**************#