paddlenlp.seq2vec.encoder.po 21.6 KB
Newer Older
yuguo-Jack's avatar
yuguo-Jack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
# SOME DESCRIPTIVE TITLE.
# Copyright (C) 2021, PaddleNLP
# This file is distributed under the same license as the PaddleNLP package.
# FIRST AUTHOR <EMAIL@ADDRESS>, 2022.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PaddleNLP \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2022-03-18 21:31+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.9.0\n"

#: ../source/paddlenlp.seq2vec.encoder.rst:2
msgid "encoder"
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder:1
#: paddlenlp.seq2vec.encoder.CNNEncoder:1
#: paddlenlp.seq2vec.encoder.GRUEncoder:1
#: paddlenlp.seq2vec.encoder.LSTMEncoder:1
#: paddlenlp.seq2vec.encoder.RNNEncoder:1
#: paddlenlp.seq2vec.encoder.TCNEncoder:1
msgid "基类::class:`paddle.fluid.dygraph.layers.Layer`"
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder:1
msgid ""
"A `BoWEncoder` takes as input a sequence of vectors and returns a single "
"vector, which simply sums the embeddings of a sequence across the time "
"dimension. The input to this encoder is of shape `(batch_size, "
"num_tokens, emb_dim)`, and the output is of shape `(batch_size, "
"emb_dim)`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder
#: paddlenlp.seq2vec.encoder.BoWEncoder.forward
#: paddlenlp.seq2vec.encoder.CNNEncoder
#: paddlenlp.seq2vec.encoder.CNNEncoder.forward
#: paddlenlp.seq2vec.encoder.GRUEncoder
#: paddlenlp.seq2vec.encoder.GRUEncoder.forward
#: paddlenlp.seq2vec.encoder.LSTMEncoder
#: paddlenlp.seq2vec.encoder.LSTMEncoder.forward
#: paddlenlp.seq2vec.encoder.RNNEncoder
#: paddlenlp.seq2vec.encoder.RNNEncoder.forward
#: paddlenlp.seq2vec.encoder.TCNEncoder
#: paddlenlp.seq2vec.encoder.TCNEncoder.forward
msgid "参数"
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder:6
#: paddlenlp.seq2vec.encoder.CNNEncoder:20
msgid "The dimension of each vector in the input sequence."
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder:10
#: paddlenlp.seq2vec.encoder.CNNEncoder:39
#: paddlenlp.seq2vec.encoder.GRUEncoder:44
#: paddlenlp.seq2vec.encoder.LSTMEncoder:43
#: paddlenlp.seq2vec.encoder.RNNEncoder:43
msgid "示例"
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder.get_input_dim:1
msgid ""
"Returns the dimension of the vector input for each element in the "
"sequence input to a `BoWEncoder`. This is not the shape of the input "
"tensor, but the last element of that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder.get_output_dim:1
msgid ""
"Returns the dimension of the final vector output by this `BoWEncoder`.  "
"This is not the shape of the returned tensor, but the last element of "
"that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder.forward:1
msgid "It simply sums the embeddings of a sequence across the time dimension."
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder.forward:3
msgid ""
"Shape as `(batch_size, num_tokens, emb_dim)` and dtype as `float32` or "
"`float64`. The sequence length of the input sequence."
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder.forward:6
msgid ""
"Shape same as `inputs`. Its each elements identify whether the "
"corresponding input token is padding or not. If True, not padding token. "
"If False, padding token. Defaults to `None`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder.forward
#: paddlenlp.seq2vec.encoder.CNNEncoder.forward
#: paddlenlp.seq2vec.encoder.GRUEncoder.forward
#: paddlenlp.seq2vec.encoder.LSTMEncoder.forward
#: paddlenlp.seq2vec.encoder.RNNEncoder.forward
#: paddlenlp.seq2vec.encoder.TCNEncoder.forward
msgid "返回"
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder.forward:12
msgid ""
"Returns tensor `summed`, the result vector of BagOfEmbedding. Its data "
"type is same as `inputs` and its shape is `[batch_size, emb_dim]`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.BoWEncoder.forward
#: paddlenlp.seq2vec.encoder.CNNEncoder.forward
#: paddlenlp.seq2vec.encoder.GRUEncoder.forward
#: paddlenlp.seq2vec.encoder.LSTMEncoder.forward
#: paddlenlp.seq2vec.encoder.RNNEncoder.forward
#: paddlenlp.seq2vec.encoder.TCNEncoder.forward
msgid "返回类型"
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder:1
msgid ""
"A `CNNEncoder` takes as input a sequence of vectors and returns a single "
"vector, a combination of multiple convolution layers and max pooling "
"layers. The input to this encoder is of shape `(batch_size, num_tokens, "
"emb_dim)`, and the output is of shape `(batch_size, output_dim)` or "
"`(batch_size, len(ngram_filter_sizes) * num_filter)`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder:6
msgid ""
"The CNN has one convolution layer for each ngram filter size. Each "
"convolution operation gives out a vector of size num_filter. The number "
"of times a convolution layer will be used is `num_tokens - ngram_size + "
"1`. The corresponding maxpooling layer aggregates all these outputs from "
"the convolution layer and outputs the max."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder:11
msgid ""
"This operation is repeated for every ngram size passed, and consequently "
"the dimensionality of the output after maxpooling is "
"`len(ngram_filter_sizes) * num_filter`.  This then gets (optionally) "
"projected down to a lower dimensional output, specified by `output_dim`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder:15
msgid ""
"We then use a fully connected layer to project in back to the desired "
"output_dim.  For more details, refer to `A Sensitivity Analysis of (and "
"Practitioners’ Guide to) Convolutional Neural Networks for Sentence "
"Classification <https://arxiv.org/abs/1510.03820>`__ , Zhang and Wallace "
"2016, particularly Figure 1."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder:22
msgid ""
"This is the output dim for each convolutional layer, which is the number "
"of \"filters\" learned by that layer."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder:25
msgid ""
"This specifies both the number of convolutional layers we will create and"
" their sizes.  The default of `(2, 3, 4, 5)` will have four convolutional"
" layers, corresponding to encoding ngrams of size 2 to 5 with some number"
" of filters."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder:29
msgid ""
"Activation to use after the convolution layers. Defaults to "
"`paddle.nn.Tanh()`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder:32
msgid ""
"After doing convolutions and pooling, we'll project the collected "
"features into a vector of this size.  If this value is `None`, we will "
"just return the result of the max pooling, giving an output of shape "
"`len(ngram_filter_sizes) * num_filter`. Defaults to `None`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder.get_input_dim:1
msgid ""
"Returns the dimension of the vector input for each element in the "
"sequence input to a `CNNEncoder`. This is not the shape of the input "
"tensor, but the last element of that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder.get_output_dim:1
msgid ""
"Returns the dimension of the final vector output by this `CNNEncoder`.  "
"This is not the shape of the returned tensor, but the last element of "
"that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder.forward:1
msgid "The combination of multiple convolution layers and max pooling layers."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder.forward:3
msgid ""
"Shape as `(batch_size, num_tokens, emb_dim)` and dtype as `float32` or "
"`float64`. Tensor containing the features of the input sequence."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder.forward:6
msgid ""
"Shape shoule be same as `inputs` and dtype as `int32`, `int64`, `float32`"
" or `float64`. Its each elements identify whether the corresponding input"
" token is padding or not. If True, not padding token. If False, padding "
"token. Defaults to `None`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.CNNEncoder.forward:12
msgid ""
"Returns tensor `result`. If output_dim is None, the result shape is of "
"`(batch_size, output_dim)` and dtype is `float`; If not, the result shape"
" is of `(batch_size, len(ngram_filter_sizes) * num_filter)`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder:1
msgid ""
"A GRUEncoder takes as input a sequence of vectors and returns a single "
"vector, which is a combination of multiple `paddle.nn.GRU "
"<https://www.paddlepaddle.org.cn/documentation/docs/en/api "
"/paddle/nn/layer/rnn/GRU_en.html>`__ subclass. The input to this encoder "
"is of shape `(batch_size, num_tokens, input_size)`, The output is of "
"shape `(batch_size, hidden_size * 2)` if GRU is bidirection; If not, "
"output is of shape `(batch_size, hidden_size)`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder:9
msgid ""
"Paddle's GRU have two outputs: the hidden state for every time step at "
"last layer, and the hidden state at the last time step for every layer. "
"If `pooling_type` is not None, we perform the pooling on the hidden state"
" of every time step at last layer to create a single vector. If None, we "
"use the hidden state of the last time step at last layer as a single "
"output (shape of `(batch_size, hidden_size)`); And if direction is "
"bidirection, the we concat the hidden state of the last forward gru and "
"backward gru layer to create a single vector (shape of `(batch_size, "
"hidden_size * 2)`)."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder:17
#: paddlenlp.seq2vec.encoder.LSTMEncoder:17
#: paddlenlp.seq2vec.encoder.RNNEncoder:17
#: paddlenlp.seq2vec.encoder.TCNEncoder:14
msgid "The number of expected features in the input (the last dimension)."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder:19
#: paddlenlp.seq2vec.encoder.LSTMEncoder:19
#: paddlenlp.seq2vec.encoder.RNNEncoder:19
msgid "The number of features in the hidden state."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder:21
msgid ""
"Number of recurrent layers. E.g., setting num_layers=2 would mean "
"stacking two GRUs together to form a stacked GRU, with the second GRU "
"taking in outputs of the first GRU and computing the final results. "
"Defaults to 1."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder:26
msgid ""
"The direction of the network. It can be \"forward\" and \"bidirect\" (it "
"means bidirection network). If \"bidirect\", it is a birectional GRU, and"
" returns the concat output from both directions. Defaults to \"forward\"."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder:31
msgid ""
"If non-zero, introduces a Dropout layer on the outputs of each GRU layer "
"except the last layer, with dropout probability equal to dropout. "
"Defaults to 0.0."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder:35
msgid ""
"If `pooling_type` is None, then the GRUEncoder will return the hidden "
"state of the last time step at last layer as a single vector. If "
"pooling_type is not None, it must be one of \"sum\", \"max\" and "
"\"mean\". Then it will be pooled on the GRU output (the hidden state of "
"every time step at last layer) to create a single vector. Defaults to "
"`None`"
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder.get_input_dim:1
msgid ""
"Returns the dimension of the vector input for each element in the "
"sequence input to a `GRUEncoder`. This is not the shape of the input "
"tensor, but the last element of that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder.get_output_dim:1
msgid ""
"Returns the dimension of the final vector output by this `GRUEncoder`.  "
"This is not the shape of the returned tensor, but the last element of "
"that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder.forward:1
msgid ""
"GRUEncoder takes the a sequence of vectors and returns a single "
"vector, which is a combination of multiple GRU layers. The input to this "
"encoder is of shape `(batch_size, num_tokens, input_size)`, The output is"
" of shape `(batch_size, hidden_size * 2)` if GRU is bidirection; If not, "
"output is of shape `(batch_size, hidden_size)`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder.forward:7
#: paddlenlp.seq2vec.encoder.LSTMEncoder.forward:7
#: paddlenlp.seq2vec.encoder.RNNEncoder.forward:7
msgid ""
"Shape as `(batch_size, num_tokens, input_size)`. Tensor containing the "
"features of the input sequence."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder.forward:10
#: paddlenlp.seq2vec.encoder.LSTMEncoder.forward:10
#: paddlenlp.seq2vec.encoder.RNNEncoder.forward:10
msgid "Shape as `(batch_size)`. The sequence length of the input sequence."
msgstr ""

#: of paddlenlp.seq2vec.encoder.GRUEncoder.forward:14
#: paddlenlp.seq2vec.encoder.LSTMEncoder.forward:14
#: paddlenlp.seq2vec.encoder.RNNEncoder.forward:14
msgid ""
"Returns tensor `output`, the hidden state at the last time step for every"
" layer. Its data type is `float` and its shape is `[batch_size, "
"hidden_size]`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.LSTMEncoder:1
msgid ""
"An LSTMEncoder takes as input a sequence of vectors and returns a single "
"vector, which is a combination of multiple `paddle.nn.LSTM "
"<https://www.paddlepaddle.org.cn/documentation/docs/en/api "
"/paddle/nn/layer/rnn/LSTM_en.html>`__ subclass. The input to this encoder"
" is of shape `(batch_size, num_tokens, input_size)`. The output is of "
"shape `(batch_size, hidden_size * 2)` if LSTM is bidirection; If not, "
"output is of shape `(batch_size, hidden_size)`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.LSTMEncoder:9
msgid ""
"Paddle's LSTM have two outputs: the hidden state for every time step at "
"last layer, and the hidden state and cell at the last time step for every"
" layer. If `pooling_type` is not None, we perform the pooling on the "
"hidden state of every time step at last layer to create a single vector. "
"If None, we use the hidden state of the last time step at last layer as a"
" single output (shape of `(batch_size, hidden_size)`); And if direction "
"is bidirection, the we concat the hidden state of the last forward lstm "
"and backward lstm layer to create a single vector (shape of `(batch_size,"
" hidden_size * 2)`)."
msgstr ""

#: of paddlenlp.seq2vec.encoder.LSTMEncoder:21
msgid ""
"Number of recurrent layers. E.g., setting num_layers=2 would mean "
"stacking two LSTMs together to form a stacked LSTM, with the second LSTM "
"taking in outputs of the first LSTM and computing the final results. "
"Defaults to 1."
msgstr ""

#: of paddlenlp.seq2vec.encoder.LSTMEncoder:26
msgid ""
"The direction of the network. It can be \"forward\" or \"bidirect\" (it "
"means bidirection network). If \"bidirect\", it is a birectional LSTM, "
"and returns the concat output from both directions. Defaults to "
"\"forward\"."
msgstr ""

#: of paddlenlp.seq2vec.encoder.LSTMEncoder:30
msgid ""
"If non-zero, introduces a Dropout layer on the outputs of each LSTM layer"
" except the last layer, with dropout probability equal to dropout. "
"Defaults to 0.0 ."
msgstr ""

#: of paddlenlp.seq2vec.encoder.LSTMEncoder:34
msgid ""
"If `pooling_type` is None, then the LSTMEncoder will return the hidden "
"state of the last time step at last layer as a single vector. If "
"pooling_type is not None, it must be one of \"sum\", \"max\" and "
"\"mean\". Then it will be pooled on the LSTM output (the hidden state of "
"every time step at last layer) to create a single vector. Defaults to "
"`None`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.LSTMEncoder.get_input_dim:1
msgid ""
"Returns the dimension of the vector input for each element in the "
"sequence input to a `LSTMEncoder`. This is not the shape of the input "
"tensor, but the last element of that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.LSTMEncoder.get_output_dim:1
msgid ""
"Returns the dimension of the final vector output by this `LSTMEncoder`.  "
"This is not the shape of the returned tensor, but the last element of "
"that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.LSTMEncoder.forward:1
msgid ""
"LSTMEncoder takes the a sequence of vectors and returns a single "
"vector, which is a combination of multiple LSTM layers. The input to this"
" encoder is of shape `(batch_size, num_tokens, input_size)`, The output "
"is of shape `(batch_size, hidden_size * 2)` if LSTM is bidirection; If "
"not, output is of shape `(batch_size, hidden_size)`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.RNNEncoder:1
msgid ""
"A RNNEncoder takes as input a sequence of vectors and returns a single "
"vector, which is a combination of multiple `paddle.nn.RNN "
"<https://www.paddlepaddle.org.cn/documentation/docs/en/api "
"/paddle/nn/layer/rnn/RNN_en.html>`__ subclass. The input to this encoder "
"is of shape `(batch_size, num_tokens, input_size)`, The output is of "
"shape `(batch_size, hidden_size * 2)` if RNN is bidirection; If not, "
"output is of shape `(batch_size, hidden_size)`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.RNNEncoder:9
msgid ""
"Paddle's RNN have two outputs: the hidden state for every time step at "
"last layer, and the hidden state at the last time step for every layer. "
"If `pooling_type` is not None, we perform the pooling on the hidden state"
" of every time step at last layer to create a single vector. If None, we "
"use the hidden state of the last time step at last layer as a single "
"output (shape of `(batch_size, hidden_size)`); And if direction is "
"bidirection, the we concat the hidden state of the last forward rnn and "
"backward rnn layer to create a single vector (shape of `(batch_size, "
"hidden_size * 2)`)."
msgstr ""

#: of paddlenlp.seq2vec.encoder.RNNEncoder:21
msgid ""
"Number of recurrent layers. E.g., setting num_layers=2 would mean "
"stacking two RNNs together to form a stacked RNN, with the second RNN "
"taking in outputs of the first RNN and computing the final results. "
"Defaults to 1."
msgstr ""

#: of paddlenlp.seq2vec.encoder.RNNEncoder:26
msgid ""
"The direction of the network. It can be \"forward\" and \"bidirect\" (it "
"means bidirection network). If \"biderect\", it is a birectional RNN, and"
" returns the concat output from both directions. Defaults to \"forward\""
msgstr ""

#: of paddlenlp.seq2vec.encoder.RNNEncoder:30
msgid ""
"If non-zero, introduces a Dropout layer on the outputs of each RNN layer "
"except the last layer, with dropout probability equal to dropout. "
"Defaults to 0.0."
msgstr ""

#: of paddlenlp.seq2vec.encoder.RNNEncoder:34
msgid ""
"If `pooling_type` is None, then the RNNEncoder will return the hidden "
"state of the last time step at last layer as a single vector. If "
"pooling_type is not None, it must be one of \"sum\", \"max\" and "
"\"mean\". Then it will be pooled on the RNN output (the hidden state of "
"every time step at last layer) to create a single vector. Defaults to "
"`None`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.RNNEncoder.get_input_dim:1
msgid ""
"Returns the dimension of the vector input for each element in the "
"sequence input to a `RNNEncoder`. This is not the shape of the input "
"tensor, but the last element of that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.RNNEncoder.get_output_dim:1
msgid ""
"Returns the dimension of the final vector output by this `RNNEncoder`.  "
"This is not the shape of the returned tensor, but the last element of "
"that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.RNNEncoder.forward:1
msgid ""
"RNNEncoder takes the a sequence of vectors and returns a single "
"vector, which is a combination of multiple RNN layers. The input to this "
"encoder is of shape `(batch_size, num_tokens, input_size)`. The output is"
" of shape `(batch_size, hidden_size * 2)` if RNN is bidirection; If not, "
"output is of shape `(batch_size, hidden_size)`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.TCNEncoder:1
msgid ""
"A `TCNEncoder` takes as input a sequence of vectors and returns a single "
"vector, which is the last one time step in the feature map. The input to "
"this encoder is of shape `(batch_size, num_tokens, input_size)`, and the "
"output is of shape `(batch_size, num_channels[-1])` with a receptive "
"filed:"
msgstr ""

#: of paddlenlp.seq2vec.encoder.TCNEncoder:7
#: paddlenlp.seq2vec.encoder.TCNEncoder.forward:7
msgid ""
"receptive filed = 2 * "
"\\sum_{i=0}^{len(num\\_channels)-1}2^i(kernel\\_size-1)."
msgstr ""

#: of paddlenlp.seq2vec.encoder.TCNEncoder:11
msgid ""
"Temporal Convolutional Networks is a simple convolutional architecture. "
"It outperforms canonical recurrent networks such as LSTMs in many tasks. "
"See https://arxiv.org/pdf/1803.01271.pdf for more details."
msgstr ""

#: of paddlenlp.seq2vec.encoder.TCNEncoder:16
msgid "The number of channels in different layer."
msgstr ""

#: of paddlenlp.seq2vec.encoder.TCNEncoder:18
msgid "The kernel size. Defaults to 2."
msgstr ""

#: of paddlenlp.seq2vec.encoder.TCNEncoder:20
msgid "The dropout probability. Defaults to 0.2."
msgstr ""

#: of paddlenlp.seq2vec.encoder.TCNEncoder.get_input_dim:1
msgid ""
"Returns the dimension of the vector input for each element in the "
"sequence input to a `TCNEncoder`. This is not the shape of the input "
"tensor, but the last element of that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.TCNEncoder.get_output_dim:1
msgid ""
"Returns the dimension of the final vector output by this `TCNEncoder`.  "
"This is not the shape of the returned tensor, but the last element of "
"that shape."
msgstr ""

#: of paddlenlp.seq2vec.encoder.TCNEncoder.forward:1
msgid ""
"TCNEncoder takes as input a sequence of vectors and returns a single "
"vector, which is the last one time step in the feature map. The input to "
"this encoder is of shape `(batch_size, num_tokens, input_size)`, and the "
"output is of shape `(batch_size, num_channels[-1])` with a receptive "
"filed:"
msgstr ""

#: of paddlenlp.seq2vec.encoder.TCNEncoder.forward:11
msgid "The input tensor with shape `[batch_size, num_tokens, input_size]`."
msgstr ""

#: of paddlenlp.seq2vec.encoder.TCNEncoder.forward:14
msgid "Returns tensor `output` with shape `[batch_size, num_channels[-1]]`."
msgstr ""