qkv_transpose_split.cu 8.08 KB
Newer Older
yuguo-Jack's avatar
yuguo-Jack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// 
//     http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "helper.h"

template <typename T, int VecSize>
__global__ void fusedQKV_transpose_split_kernel(
    T *q_buf,
    T *k_buf,
    T *v_buf,
    const T *qkv,
    const int *padding_offset,
    const int *seq_lens,
    const int32_t elem_cnt,
    const int batch_size,
    const int max_len_this_time,
    const int seq_len,
    const int token_num,
    const int head_num,
    const int size_per_head) {
  const int32_t offset = batch_size * max_len_this_time * head_num * size_per_head;
  const int32_t hidden_size = head_num * size_per_head;
  const int32_t fused_hidden_size = 3 * hidden_size;
  int64_t global_thread_idx = blockDim.x * blockIdx.x + threadIdx.x;
  using LoadT = AlignedVector<T, VecSize>;
  LoadT src_vec;
  LoadT bias_vec;

  for (int32_t linear_index = global_thread_idx * VecSize,
               step = gridDim.x * blockDim.x * VecSize;
       linear_index < elem_cnt;
       linear_index += step) {
    Load<T, VecSize>(&qkv[linear_index], &src_vec);
    int32_t bias_idx = linear_index % fused_hidden_size;
    const int32_t token_idx = linear_index / fused_hidden_size;
    const int32_t ori_token_idx =
        token_idx + (padding_offset == nullptr ? 0 : padding_offset[token_idx]);
    const int32_t target_batch_id = ori_token_idx / seq_len;
    if (seq_lens[target_batch_id] == 0) continue;
    const int32_t seq_id = ori_token_idx % seq_len;

    // equal to:
    // const int qkv_id  = (linear_index % fused_hidden_size) / hidden_size;
    const int32_t qkv_id = bias_idx / hidden_size;
    const int32_t head_id = (linear_index % hidden_size) / size_per_head;
    const int32_t size_id = linear_index % size_per_head;

    if (qkv_id == 0) {
      Store<T, VecSize>(
          src_vec,
          &q_buf[target_batch_id * head_num * max_len_this_time * size_per_head +
                 head_id * max_len_this_time * size_per_head + seq_id * size_per_head +
                 size_id]);
    } else if (qkv_id == 1) {
      Store<T, VecSize>(
          src_vec,
          &k_buf[target_batch_id * head_num * max_len_this_time * size_per_head +
                 head_id * max_len_this_time * size_per_head + seq_id * size_per_head +
                 size_id]);
    } else {
      Store<T, VecSize>(
          src_vec,
          &v_buf[target_batch_id * head_num * max_len_this_time * size_per_head +
                 head_id * max_len_this_time * size_per_head + seq_id * size_per_head +
                 size_id]);
    }
  }
}

template <paddle::DataType D>
std::vector<paddle::Tensor> qkv_transpose_split(const paddle::Tensor& qkv, // [token_num, dim_embed]
                                                const paddle::Tensor& padding_offset, // [bsz, 1]
                                                const paddle::Tensor& seq_lens,
                                                const paddle::Tensor& input_ids,
                                                int num_head,
                                                int head_size) {
    typedef PDTraits<D> traits_;
    typedef typename traits_::DataType DataType_;
    typedef typename traits_::data_t data_t;

    auto cu_stream = qkv.stream();
    std::vector<int64_t> qkv_shape = qkv.shape();
    const int token_num = qkv_shape[0];
    const int bsz = seq_lens.shape()[0];
    const int max_seq_len = input_ids.shape()[1]; //max_seq_len_tensor.copy_to(paddle::CPUPlace(), false).data<int>()[0];
    auto q_out = paddle::full({bsz, num_head, max_seq_len, head_size}, 0, qkv.dtype(), qkv.place());
    auto k_out = paddle::full({bsz, num_head, max_seq_len, head_size}, 0, qkv.dtype(), qkv.place());
    auto v_out = paddle::full({bsz, num_head, max_seq_len, head_size}, 0, qkv.dtype(), qkv.place());
    constexpr int PackSize = VEC_16B / sizeof(DataType_);
    const int elem_cnt = token_num * num_head * head_size * 3;
    const int pack_num = elem_cnt / PackSize;
    const int blocksize = 128;
    const int grid_size = (pack_num + blocksize - 1) / blocksize;
    fusedQKV_transpose_split_kernel<DataType_, PackSize>
      <<<grid_size, blocksize, 0, qkv.stream()>>>(
        reinterpret_cast<DataType_*>(q_out.data<data_t>()),
        reinterpret_cast<DataType_*>(k_out.data<data_t>()),
        reinterpret_cast<DataType_*>(v_out.data<data_t>()),
        reinterpret_cast<DataType_*>(const_cast<data_t*>(qkv.data<data_t>())),
        padding_offset.data<int>(),
        seq_lens.data<int>(),
        elem_cnt,
        bsz,
        max_seq_len,
        max_seq_len,
        token_num,
        num_head,
        head_size);
    return {q_out, k_out, v_out};
}

std::vector<paddle::Tensor> QKVTransposeSplit(const paddle::Tensor& qkv, 
                                              const paddle::Tensor& padding_offset, 
                                              const paddle::Tensor& seq_lens,
                                              const paddle::Tensor& input_ids,
                                              int num_head,
                                              int head_size) {
    switch (qkv.type()) {
        case paddle::DataType::BFLOAT16: {
            return qkv_transpose_split<paddle::DataType::BFLOAT16>(
                qkv,
                padding_offset,
                seq_lens,
                input_ids,
                num_head,
                head_size
            );
        }
        case paddle::DataType::FLOAT16: {
            return qkv_transpose_split<paddle::DataType::FLOAT16>(
                qkv,
                padding_offset,
                seq_lens,
                input_ids,
                num_head,
                head_size
            );
        }
        case paddle::DataType::FLOAT32: {
            return qkv_transpose_split<paddle::DataType::FLOAT32>(
                qkv,
                padding_offset,
                seq_lens,
                input_ids,
                num_head,
                head_size
            );
        }
        default: {
            PD_THROW(
                "NOT supported data type. "
                "Only float16, bfloat16 and float32 are supported. ");
            break;
        }
    }
}

std::vector<std::vector<int64_t>> QKVTransposeSplitInferShape(const std::vector<int64_t>& qkv_shape,
                                                              const std::vector<int64_t>& padding_offset_shape,
                                                              const std::vector<int64_t>& seq_lens_shape,
                                                              const std::vector<int64_t>& input_ids_shape,
                                                              int num_head,
                                                              int head_size) {
    int64_t bsz = seq_lens_shape[0];
    return {{bsz, num_head, -1, head_size}, {bsz, num_head, -1, head_size}, {bsz, num_head, -1, head_size}};
}

std::vector<paddle::DataType> QKVTransposeSplitInferDtype(const paddle::DataType& qkv_dtype,
                                                        const paddle::DataType& padding_offset_dtype,
                                                        const paddle::DataType& seq_lens_dtype,
                                                        const paddle::DataType& input_ids_dtype) {
    return {qkv_dtype, qkv_dtype, qkv_dtype};
}

PD_BUILD_OP(qkv_transpose_split)
    .Inputs({"qkv", "padding_offset", "seq_lens", "input_ids"})
    .Outputs({"q_out", "k_out", "v_out"})
    .Attrs({"num_head: int",
            "head_size: int"})
    .SetKernelFn(PD_KERNEL(QKVTransposeSplit))
    .SetInferShapeFn(PD_INFER_SHAPE(QKVTransposeSplitInferShape))
    .SetInferDtypeFn(PD_INFER_DTYPE(QKVTransposeSplitInferDtype));