get_padding_offset.cu 5.8 KB
Newer Older
yuguo-Jack's avatar
yuguo-Jack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// 
//     http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "helper.h"

__global__ void RemovePadding(int64_t *output_data,
                              const int64_t *input_data,
                              const int *seq_lens,
                              const int *cum_offsets,
                              const int sequence_length) {
  const int bi = blockIdx.x;
  const int tid = threadIdx.x;

  for (int i = tid; i < seq_lens[bi]; i += blockDim.x) {
    const int tgt_seq_id = bi * sequence_length - cum_offsets[bi] + i;
    const int src_seq_id = bi * sequence_length + i;
    output_data[tgt_seq_id] = input_data[src_seq_id];
  }
}

__global__ void GetCumOffsetKernel(int *token_num,
                                   int *enc_token_num,
                                   int *dec_token_num,
                                   int *cum_offsets,
                                   const int *sequence_lengths,
                                   const int *sequence_lengths_encoder,
                                   const int *sequence_lengths_decoder,
                                   const int batch_size,
                                   const int max_seq_len) {
  // get padding offset of each batch
  int total_seq_len = 0;
  int enc_total_seq_len = 0;
  int dec_total_seq_len = 0;
  int cum_offset = 0;
  int index = 0;
  
  for (int i = 0; i < batch_size; i++) {
    cum_offsets[i] = cum_offset;
    int seq_len = sequence_lengths[i];
    int seq_len_enc = sequence_lengths_encoder[i];
    int seq_len_dec = sequence_lengths_decoder[i];

    cum_offset += max_seq_len - seq_len;

    total_seq_len += seq_len;
    enc_total_seq_len += seq_len_enc;
    dec_total_seq_len += seq_len_dec;
  }
  token_num[0] = total_seq_len;
  enc_token_num[0] = enc_total_seq_len;
  dec_token_num[0] = dec_total_seq_len;
}

__global__ void GetPaddingOffsetKernel(int *padding_offset,
                                       int *cum_offsets_out,
                                       const int *cum_offsets,
                                       const int *seq_lens,
                                       const int max_seq_len) {
  // get padding offset of each batch
  const int bi = blockIdx.x;
  const int ti = threadIdx.x;
  if (ti == 0) {
    cum_offsets_out[bi] = bi == 0 ? 0 : cum_offsets[bi - 1];
  }
  int cum_offset = bi == 0 ? 0 : cum_offsets[bi - 1];
  for (int i = ti; i < seq_lens[bi]; i += blockDim.x) {
    padding_offset[bi * max_seq_len - cum_offset + i] = cum_offset;
  }
}


std::vector<paddle::Tensor> GetPaddingOffset(const paddle::Tensor& input_ids,
                                             const paddle::Tensor& cum_offsets,
                                             const paddle::Tensor& token_num,
                                             const paddle::Tensor& seq_len) {
    auto cu_stream = input_ids.stream();
    std::vector<int64_t> input_ids_shape = input_ids.shape();
    const int bsz = input_ids_shape[0];
    const int seq_length = input_ids_shape[1];
    auto cum_offsets_out = cum_offsets.copy_to(cum_offsets.place(), false);
    auto cpu_token_num = token_num.copy_to(paddle::CPUPlace(), false);
    const int token_num_data = cpu_token_num.data<int64_t>()[0];
    auto x_remove_padding = paddle::full({token_num_data}, 0, paddle::DataType::INT64, input_ids.place());
    auto padding_offset = paddle::full({token_num_data}, 0, paddle::DataType::INT32, input_ids.place());
    int blockSize = min((token_num_data + 32 - 1) / 32 * 32, 128);
    GetPaddingOffsetKernel<<<bsz, 128, 0, cu_stream>>>(
      padding_offset.data<int>(), 
      cum_offsets_out.data<int>(),
      cum_offsets.data<int>(),
      seq_len.data<int>(),
      seq_length);
    RemovePadding<<<bsz, blockSize, 0, cu_stream>>>(
      x_remove_padding.data<int64_t>(), 
      input_ids.data<int64_t>(), 
      seq_len.data<int>(),
      cum_offsets_out.data<int>(), 
      seq_length);
    return {x_remove_padding, cum_offsets_out, padding_offset}; // , enc_token_num, dec_token_num};
}

std::vector<std::vector<int64_t>> GetPaddingOffsetInferShape(const std::vector<int64_t>& input_ids_shape,
                                                             const std::vector<int64_t>& cum_offsets_shape,
                                                             const std::vector<int64_t>& token_num_shape,
                                                             const std::vector<int64_t>& seq_len_shape) {
    int64_t bsz = input_ids_shape[0];
    int64_t seq_len = input_ids_shape[1];
    return {{-1}, {bsz}, {-1}};
}

std::vector<paddle::DataType> GetPaddingOffsetInferDtype(const paddle::DataType& input_ids_dtype,
                                                         const paddle::DataType& cum_offsets_dtype,
                                                         const paddle::DataType& token_num_dtype,
                                                         const paddle::DataType& seq_len_dtype) {
    return {input_ids_dtype, seq_len_dtype, seq_len_dtype};
}

PD_BUILD_OP(get_padding_offset)
    .Inputs({"input_ids", "cum_offsets", "token_num", "seq_len"})
    .Outputs({"x_remove_padding", "cum_offsets_out", "padding_offset"})
    .SetKernelFn(PD_KERNEL(GetPaddingOffset))
    .SetInferShapeFn(PD_INFER_SHAPE(GetPaddingOffsetInferShape))
    .SetInferDtypeFn(PD_INFER_DTYPE(GetPaddingOffsetInferDtype));