predict.py 8.54 KB
Newer Older
yuguo-Jack's avatar
yuguo-Jack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import copy
import json
import re
from collections import defaultdict
from functools import partial

import paddle
from classification.data import (
    convert_example_to_feature as convert_example_to_feature_cls,
)
from datasets import Dataset, load_dataset
from extraction.data import convert_example_to_feature as convert_example_to_feature_ext
from utils import decoding, load_dict

from paddlenlp.data import DataCollatorForTokenClassification, DataCollatorWithPadding
from paddlenlp.transformers import (
    SkepForSequenceClassification,
    SkepForTokenClassification,
    SkepTokenizer,
)


def concate_aspect_and_opinion(text, aspect, opinions):
    aspect_text = ""
    for opinion in opinions:
        if text.find(aspect) <= text.find(opinion):
            aspect_text += aspect + opinion + ","
        else:
            aspect_text += opinion + aspect + ","
    aspect_text = aspect_text[:-1]

    return aspect_text


def remove_blanks(example):
    example["text"] = re.sub(" +", "", example["text"])
    return example


def predict_ext(args):
    # load dict and dataset
    model_name = "skep_ernie_1.0_large_ch"
    ext_label2id, ext_id2label = load_dict(args.ext_label_path)
    datasets = load_dataset("text", data_files={"test": args.test_path})
    datasets["test"] = datasets["test"].map(remove_blanks)

    tokenizer = SkepTokenizer.from_pretrained(model_name)
    trans_func = partial(
        convert_example_to_feature_ext,
        tokenizer=tokenizer,
        label2id=ext_label2id,
        max_seq_len=args.ext_max_seq_len,
        is_test=True,
    )
    test_ds = copy.copy(datasets["test"]).map(trans_func, batched=False, remove_columns=["text"])
    data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=ext_label2id["O"])
    test_batch_sampler = paddle.io.BatchSampler(test_ds, batch_size=args.batch_size, shuffle=False)
    test_loader = paddle.io.DataLoader(test_ds, batch_sampler=test_batch_sampler, collate_fn=data_collator)
    print("test data loaded.")

    # load ext model
    ext_state_dict = paddle.load(args.ext_model_path)
    ext_model = SkepForTokenClassification.from_pretrained(model_name, num_classes=len(ext_label2id))
    ext_model.load_dict(ext_state_dict)
    print("extraction model loaded.")

    ext_model.eval()
    results = []
    for bid, batch_data in enumerate(test_loader):
        input_ids, token_type_ids, seq_lens = (
            batch_data["input_ids"],
            batch_data["token_type_ids"],
            batch_data["seq_len"],
        )
        logits = ext_model(input_ids, token_type_ids=token_type_ids)

        predictions = logits.argmax(axis=2).numpy()
        for eid, (seq_len, prediction) in enumerate(zip(seq_lens, predictions)):
            idx = bid * args.batch_size + eid
            tag_seq = [ext_id2label[idx] for idx in prediction[:seq_len][1:-1]]
            text = datasets["test"][idx]["text"]
            aps = decoding(text[: args.ext_max_seq_len - 2], tag_seq)
            for aid, ap in enumerate(aps):
                aspect, opinions = ap[0], list(set(ap[1:]))
                aspect_text = concate_aspect_and_opinion(text, aspect, opinions)
                results.append(
                    {
                        "id": str(idx) + "_" + str(aid),
                        "aspect": aspect,
                        "opinions": opinions,
                        "text": text,
                        "aspect_text": aspect_text,
                    }
                )

    return results


def predict_cls(args, ext_results):
    # load dict
    model_name = "skep_ernie_1.0_large_ch"
    cls_label2id, cls_id2label = load_dict(args.cls_label_path)
    text_list = []
    for result in ext_results:
        example = result["aspect_text"] + "\t" + result["text"]
        text_list.append(example)
    ext_results = {"text": text_list}
    dataset = Dataset.from_dict(ext_results)

    tokenizer = SkepTokenizer.from_pretrained(model_name)
    trans_func = partial(
        convert_example_to_feature_cls,
        tokenizer=tokenizer,
        label2id=cls_label2id,
        max_seq_len=args.cls_max_seq_len,
        is_test=True,
    )

    test_ds = dataset.map(trans_func, batched=False, remove_columns=["text"])
    data_collator = DataCollatorWithPadding(tokenizer, padding=True)
    test_batch_sampler = paddle.io.BatchSampler(test_ds, batch_size=args.batch_size, shuffle=False)
    test_loader = paddle.io.DataLoader(test_ds, batch_sampler=test_batch_sampler, collate_fn=data_collator)
    print("test data loaded.")

    # load cls model
    cls_state_dict = paddle.load(args.cls_model_path)
    cls_model = SkepForSequenceClassification.from_pretrained(model_name, num_classes=len(cls_label2id))
    cls_model.load_dict(cls_state_dict)
    print("classification model loaded.")

    cls_model.eval()

    results = []
    for bid, batch_data in enumerate(test_loader):
        input_ids, token_type_ids = batch_data["input_ids"], batch_data["token_type_ids"]
        logits = cls_model(input_ids, token_type_ids=token_type_ids)

        predictions = logits.argmax(axis=1).numpy().tolist()
        results.extend(predictions)

    results = [cls_id2label[pred_id] for pred_id in results]
    return results


def post_process(ext_results, cls_results):
    assert len(ext_results) == len(cls_results)

    collect_dict = defaultdict(list)
    for ext_result, cls_result in zip(ext_results, cls_results):
        ext_result["sentiment_polarity"] = cls_result
        eid, _ = ext_result["id"].split("_")
        collect_dict[eid].append(ext_result)

    sentiment_results = []
    for eid in collect_dict.keys():
        sentiment_result = {}
        ap_list = []
        for idx, single_ap in enumerate(collect_dict[eid]):
            if idx == 0:
                sentiment_result["text"] = single_ap["text"]
            ap_list.append(
                {
                    "aspect": single_ap["aspect"],
                    "opinions": single_ap["opinions"],
                    "sentiment_polarity": single_ap["sentiment_polarity"],
                }
            )
        sentiment_result["ap_list"] = ap_list
        sentiment_results.append(sentiment_result)

    with open(args.save_path, "w", encoding="utf-8") as f:
        for sentiment_result in sentiment_results:
            f.write(json.dumps(sentiment_result, ensure_ascii=False) + "\n")


if __name__ == "__main__":
    # yapf: disable
    parser = argparse.ArgumentParser()
    parser.add_argument("--ext_model_path", type=str, default=None, help="The path of extraction model path that you want to load.")
    parser.add_argument("--cls_model_path", type=str, default=None, help="The path of classification model path that you want to load.")
    parser.add_argument("--ext_label_path", type=str, default=None, help="The path of extraction label dict.")
    parser.add_argument("--cls_label_path", type=str, default=None, help="The path of classification label dict.")
    parser.add_argument('--test_path', type=str, default=None, help="The path of test set that you want to predict.")
    parser.add_argument('--save_path', type=str, required=True, default=None, help="The saving path of predict results.")
    parser.add_argument("--batch_size", type=int, default=16, help="Batch size per GPU/CPU for training.")
    parser.add_argument("--ext_max_seq_len", type=int, default=512, help="The maximum total input sequence length after tokenization for extraction model.")
    parser.add_argument("--cls_max_seq_len", type=int, default=512, help="The maximum total input sequence length after tokenization for classification model.")
    args = parser.parse_args()
    # yapf: enable

    # predict with ext model
    ext_results = predict_ext(args)
    print("predicting with extraction model done!")

    # predict with cls model
    cls_results = predict_cls(args, ext_results)
    print("predicting with classification model done!")

    # post_process prediction results
    post_process(ext_results, cls_results)
    print(f"sentiment analysis results has been saved to path: {args.save_path}")