demo.py 5.18 KB
Newer Older
yuguo-Jack's avatar
yuguo-Jack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import re

import paddle
from utils import decoding, load_dict

from paddlenlp.transformers import (
    SkepForSequenceClassification,
    SkepForTokenClassification,
    SkepTokenizer,
)


def is_aspect_first(text, aspect, opinion_word):
    return text.find(aspect) <= text.find(opinion_word)


def concate_aspect_and_opinion(text, aspect, opinion_words):
    aspect_text = ""
    for opinion_word in opinion_words:
        if is_aspect_first(text, aspect, opinion_word):
            aspect_text += aspect + opinion_word + ","
        else:
            aspect_text += opinion_word + aspect + ","
    aspect_text = aspect_text[:-1]

    return aspect_text


def format_print(results):
    for result in results:
        aspect, opinions, sentiment = result["aspect"], result["opinions"], result["sentiment_polarity"]
        print(f"aspect: {aspect}, opinions: {opinions}, sentiment_polarity: {sentiment}")
    print()


def predict(args, ext_model, cls_model, tokenizer, ext_id2label, cls_id2label):

    ext_model.eval()
    cls_model.eval()

    while True:
        input_text = input("input text: \n")
        input_text = re.sub(" +", "", input_text.strip())
        if not input_text:
            continue
        if input_text == "quit" or input_text == "exit":
            break

        input_text = input_text.strip().replace(" ", "")
        # processing input text
        encoded_inputs = tokenizer(list(input_text), is_split_into_words=True, max_seq_len=args.ext_max_seq_len)
        input_ids = paddle.to_tensor([encoded_inputs["input_ids"]])
        token_type_ids = paddle.to_tensor([encoded_inputs["token_type_ids"]])

        # extract aspect and opinion words
        logits = ext_model(input_ids, token_type_ids=token_type_ids)
        predictions = logits.argmax(axis=2).numpy()[0]
        tag_seq = [ext_id2label[idx] for idx in predictions][1:-1]

        aps = decoding(input_text[: args.ext_max_seq_len - 2], tag_seq)

        # predict sentiment for aspect with cls_model
        results = []
        for ap in aps:
            aspect = ap[0]
            opinion_words = list(set(ap[1:]))
            aspect_text = concate_aspect_and_opinion(input_text, aspect, opinion_words)

            encoded_inputs = tokenizer(
                aspect_text, text_pair=input_text, max_seq_len=args.cls_max_seq_len, return_length=True
            )
            input_ids = paddle.to_tensor([encoded_inputs["input_ids"]])
            token_type_ids = paddle.to_tensor([encoded_inputs["token_type_ids"]])

            logits = cls_model(input_ids, token_type_ids=token_type_ids)
            prediction = int(logits.argmax(axis=1))

            result = {"aspect": aspect, "opinions": opinion_words, "sentiment_polarity": cls_id2label[prediction]}
            results.append(result)

        format_print(results)


if __name__ == "__main__":
    # yapf: disable
    parser = argparse.ArgumentParser()
    parser.add_argument("--ext_model_path", type=str, default=None, help="The path of extraction model path that you want to load.")
    parser.add_argument("--cls_model_path", type=str, default=None, help="The path of classification model path that you want to load.")
    parser.add_argument("--ext_label_path", type=str, default=None, help="The path of extraction label dict.")
    parser.add_argument("--cls_label_path", type=str, default=None, help="The path of classification label dict.")
    parser.add_argument("--ext_max_seq_len", type=int, default=512, help="The maximum total input sequence length after tokenization for extraction model.")
    parser.add_argument("--cls_max_seq_len", type=int, default=512, help="The maximum total input sequence length after tokenization for classification model.")
    args = parser.parse_args()
    # yapf: enbale

    # load dict
    model_name = "skep_ernie_1.0_large_ch"
    ext_label2id, ext_id2label = load_dict(args.ext_label_path)
    cls_label2id, cls_id2label = load_dict(args.cls_label_path)
    tokenizer = SkepTokenizer.from_pretrained(model_name)
    print("label dict loaded.")

    # load ext model
    ext_state_dict = paddle.load(args.ext_model_path)
    ext_model = SkepForTokenClassification.from_pretrained(model_name, num_classes=len(ext_label2id))
    ext_model.load_dict(ext_state_dict)
    print("extraction model loaded.")

    # load cls model
    cls_state_dict = paddle.load(args.cls_model_path)
    cls_model = SkepForSequenceClassification.from_pretrained(model_name, num_classes=len(cls_label2id))
    cls_model.load_dict(cls_state_dict)
    print("classification model loaded.")

    # do predict
    predict(args, ext_model, cls_model, tokenizer, ext_id2label, cls_id2label)