"examples/production_monitoring/README.md" did not exist on "8d5187cb25f1abd684e60962c4532338a19d2f3a"
model.py 4.93 KB
Newer Older
yuguo-Jack's avatar
yuguo-Jack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class SimCSE(nn.Layer):
    def __init__(self, pretrained_model, dropout=None, margin=0.0, scale=20, output_emb_size=None):

        super().__init__()

        self.ptm = pretrained_model
        self.dropout = nn.Dropout(dropout if dropout is not None else 0.1)

        # if output_emb_size is greater than 0, then add Linear layer to reduce embedding_size,
        # we recommend set output_emb_size = 256 considering the trade-off between
        # recall performance and efficiency
        self.output_emb_size = output_emb_size
        if output_emb_size > 0:
            weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.TruncatedNormal(std=0.02))
            self.emb_reduce_linear = paddle.nn.Linear(
                self.ptm.config.hidden_size, output_emb_size, weight_attr=weight_attr
            )

        self.margin = margin
        # Used scaling cosine similarity to ease converge
        self.sacle = scale

    @paddle.jit.to_static(
        input_spec=[
            paddle.static.InputSpec(shape=[None, None], dtype="int64"),
            paddle.static.InputSpec(shape=[None, None], dtype="int64"),
        ]
    )
    def get_pooled_embedding(
        self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, with_pooler=True
    ):

        # Note: cls_embedding is poolerd embedding with act tanh
        sequence_output, cls_embedding = self.ptm(input_ids, token_type_ids, position_ids, attention_mask)

        if with_pooler is False:
            cls_embedding = sequence_output[:, 0, :]

        if self.output_emb_size > 0:
            cls_embedding = self.emb_reduce_linear(cls_embedding)

        cls_embedding = self.dropout(cls_embedding)
        cls_embedding = F.normalize(cls_embedding, p=2, axis=-1)

        return cls_embedding

    def get_semantic_embedding(self, data_loader):
        self.eval()
        with paddle.no_grad():
            for batch_data in data_loader:
                input_ids, token_type_ids = batch_data
                input_ids = paddle.to_tensor(input_ids)
                token_type_ids = paddle.to_tensor(token_type_ids)

                text_embeddings = self.get_pooled_embedding(input_ids, token_type_ids=token_type_ids)

                yield text_embeddings

    def cosine_sim(
        self,
        query_input_ids,
        title_input_ids,
        query_token_type_ids=None,
        query_position_ids=None,
        query_attention_mask=None,
        title_token_type_ids=None,
        title_position_ids=None,
        title_attention_mask=None,
        with_pooler=True,
    ):

        query_cls_embedding = self.get_pooled_embedding(
            query_input_ids, query_token_type_ids, query_position_ids, query_attention_mask, with_pooler=with_pooler
        )

        title_cls_embedding = self.get_pooled_embedding(
            title_input_ids, title_token_type_ids, title_position_ids, title_attention_mask, with_pooler=with_pooler
        )

        cosine_sim = paddle.sum(query_cls_embedding * title_cls_embedding, axis=-1)
        return cosine_sim

    def forward(
        self,
        query_input_ids,
        title_input_ids,
        query_token_type_ids=None,
        query_position_ids=None,
        query_attention_mask=None,
        title_token_type_ids=None,
        title_position_ids=None,
        title_attention_mask=None,
    ):

        query_cls_embedding = self.get_pooled_embedding(
            query_input_ids, query_token_type_ids, query_position_ids, query_attention_mask
        )

        title_cls_embedding = self.get_pooled_embedding(
            title_input_ids, title_token_type_ids, title_position_ids, title_attention_mask
        )

        cosine_sim = paddle.matmul(query_cls_embedding, title_cls_embedding, transpose_y=True)

        # substract margin from all positive samples cosine_sim()
        margin_diag = paddle.full(
            shape=[query_cls_embedding.shape[0]], fill_value=self.margin, dtype=paddle.get_default_dtype()
        )

        cosine_sim = cosine_sim - paddle.diag(margin_diag)

        # scale cosine to ease training converge
        cosine_sim *= self.sacle

        labels = paddle.arange(0, query_cls_embedding.shape[0], dtype="int64")
        labels = paddle.reshape(labels, shape=[-1, 1])

        loss = F.cross_entropy(input=cosine_sim, label=labels)

        return loss