inference.py 4.08 KB
Newer Older
yuguo-Jack's avatar
yuguo-Jack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from functools import partial

import paddle
from data import create_dataloader
from model import SimCSE

from paddlenlp.data import Pad, Tuple
from paddlenlp.datasets import MapDataset
from paddlenlp.transformers import AutoModel, AutoTokenizer


def convert_example(example, tokenizer, max_seq_length=512, do_evalute=False):
    """
    Builds model inputs from a sequence.

    A BERT sequence has the following format:

    - single sequence: ``[CLS] X [SEP]``

    Args:
        example(obj:`list(str)`): The list of text to be converted to ids.
        tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer`
            which contains most of the methods. Users should refer to the superclass for more information regarding methods.
        max_seq_len(obj:`int`): The maximum total input sequence length after tokenization.
            Sequences longer than this will be truncated, sequences shorter will be padded.
        is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.

    Returns:
        input_ids(obj:`list[int]`): The list of query token ids.
        token_type_ids(obj: `list[int]`): List of query sequence pair mask.
    """

    result = []

    for key, text in example.items():
        encoded_inputs = tokenizer(text=text, max_seq_len=max_seq_length)
        input_ids = encoded_inputs["input_ids"]
        token_type_ids = encoded_inputs["token_type_ids"]
        result += [input_ids, token_type_ids]

    return result


if __name__ == "__main__":
    device = "gpu"
    max_seq_length = 64
    output_emb_size = 256
    batch_size = 1
    params_path = "checkpoints/model_20000/model_state.pdparams"
    id2corpus = {0: "国有企业引入非国有资本对创新绩效的影响——基于制造业国有上市公司的经验证据"}
    model_name_or_path = "rocketqa-zh-base-query-encoder"
    paddle.set_device(device)

    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
    trans_func = partial(convert_example, tokenizer=tokenizer, max_seq_length=max_seq_length)

    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"),  # text_input
        Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"),  # text_segment
    ): [data for data in fn(samples)]

    pretrained_model = AutoModel.from_pretrained(model_name_or_path)

    model = SimCSE(pretrained_model, output_emb_size=output_emb_size)

    # Load pretrained semantic model
    if params_path and os.path.isfile(params_path):
        state_dict = paddle.load(params_path)
        model.set_dict(state_dict)
        print("Loaded parameters from %s" % params_path)
    else:
        raise ValueError("Please set --params_path with correct pretrained model file")

    # conver_example function's input must be dict
    corpus_list = [{idx: text} for idx, text in id2corpus.items()]
    corpus_ds = MapDataset(corpus_list)

    corpus_data_loader = create_dataloader(
        corpus_ds, mode="predict", batch_size=batch_size, batchify_fn=batchify_fn, trans_fn=trans_func
    )

    all_embeddings = []
    model.eval()
    with paddle.no_grad():
        for batch_data in corpus_data_loader:
            input_ids, token_type_ids = batch_data

            text_embeddings = model.get_pooled_embedding(input_ids, token_type_ids)
            all_embeddings.append(text_embeddings)

    text_embedding = all_embeddings[0]
    print(text_embedding.shape)
    print(text_embedding.numpy())