docvqa.py 14.1 KB
Newer Older
yuguo-Jack's avatar
yuguo-Jack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
import json
import sys

import numpy as np
import paddle
from paddle.io import Dataset
from tqdm import tqdm

sys.path.insert(0, "../")


class DocVQAExample(object):
    def __init__(self, question, doc_tokens, doc_boxes=[], answer=None, labels=None, image=None):
        self.question = question
        self.doc_tokens = doc_tokens
        self.doc_boxes = doc_boxes
        self.image = image
        self.answer = answer
        self.labels = labels


class DocVQAFeatures(object):
    """A single set of features of data."""

    def __init__(self, example_index, input_ids, input_mask, segment_ids, boxes=None, label=None):
        self.example_index = example_index
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.boxes = boxes
        self.label = label


class DocVQA(Dataset):
    def __init__(
        self, args, tokenizer, label2id_map, max_seq_len=512, max_query_length=20, max_doc_length=512, max_span_num=1
    ):
        super(DocVQA, self).__init__()
        self.tokenizer = tokenizer
        self.label2id_map = label2id_map
        self.max_seq_len = max_seq_len
        self.max_query_length = max_query_length
        self.max_doc_length = max_doc_length
        self.max_span_num = max_span_num
        self.sample_list = None
        self.args = args

        self.docvqa_inputs = self.docvqa_input()

    def check_is_max_context(self, doc_spans, cur_span_index, position):
        """Check if this is the 'max context' doc span for the token."""

        # Because of the sliding window approach taken to scoring documents, a single
        # token can appear in multiple documents. E.g.
        #  Doc: the man went to the store and bought a gallon of milk
        #  Span A: the man went to the
        #  Span B: to the store and bought
        #  Span C: and bought a gallon of
        #  ...
        #
        # Now the word 'bought' will have two scores from spans B and C. We only
        # want to consider the score with "maximum context", which we define as
        # the *minimum* of its left and right context (the *sum* of left and
        # right context will always be the same, of course).
        #
        # In the example the maximum context for 'bought' would be span C since
        # it has 1 left context and 3 right context, while span B has 4 left context
        # and 0 right context.
        best_score = None
        best_span_index = None
        for (span_index, doc_span) in enumerate(doc_spans):
            end = doc_span.start + doc_span.length - 1
            if position < doc_span.start:
                continue
            if position > end:
                continue
            num_left_context = position - doc_span.start
            num_right_context = end - position
            score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
            if best_score is None or score > best_score:
                best_score = score
            best_span_index = span_index

        return cur_span_index == best_span_index

    def convert_examples_to_features(
        self, examples, tokenizer, label_map, max_seq_length, max_span_num, max_doc_length, max_query_length
    ):

        if "[CLS]" in self.tokenizer.get_vocab():
            start_token = "[CLS]"
            end_token = "[SEP]"
        else:
            start_token = "<s>"
            end_token = "</s>"

        features = []
        for (example_index, example) in enumerate(examples):
            query_tokens = tokenizer.tokenize(example.question)
            if len(query_tokens) > max_query_length:
                query_tokens = query_tokens[0:max_query_length]

            all_doc_tokens = example.doc_tokens
            all_doc_boxes_tokens = example.doc_boxes

            cls_token_box = [0, 0, 0, 0]
            sep_token_box = [1000, 1000, 1000, 1000]
            pad_token_box = [0, 0, 0, 0]
            ques_token_box = [0, 0, 0, 0]

            # The -3 accounts for [CLS], [SEP] and [SEP]
            max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

            # We can have documents that are longer than the maximum sequence length.
            # To deal with this we do a sliding window approach, where we take chunks
            # of the up to our max length with a stride of `doc_stride`.
            _DocSpan = collections.namedtuple("DocSpan", ["start", "length"])
            doc_spans = []
            start_offset = 0
            while start_offset < len(all_doc_tokens):
                length = len(all_doc_tokens) - start_offset
                if length > max_tokens_for_doc:
                    length = max_tokens_for_doc
                doc_spans.append(_DocSpan(start=start_offset, length=length))
                if start_offset + length == len(all_doc_tokens):
                    break
                start_offset += length

            spans_input_ids = []
            spans_input_mask = []
            spans_segment_ids = []
            spans_boxes_tokens = []
            for (doc_span_index, doc_span) in enumerate(doc_spans):
                if doc_span_index == max_span_num:
                    break
                tokens = []
                boxes_tokens = []
                token_is_max_context = {}
                segment_ids = []
                tokens.append(start_token)
                boxes_tokens.append(cls_token_box)
                segment_ids.append(0)
                for token in query_tokens:
                    tokens.append(token)
                    boxes_tokens.append(ques_token_box)
                    segment_ids.append(0)
                tokens.append(end_token)
                boxes_tokens.append(sep_token_box)
                segment_ids.append(0)
                for i in range(doc_span.length):
                    split_token_index = doc_span.start + i
                    is_max_context = self.check_is_max_context(doc_spans, doc_span_index, split_token_index)
                    token_is_max_context[len(tokens)] = is_max_context
                    tokens.append(all_doc_tokens[split_token_index])
                    boxes_tokens.append(all_doc_boxes_tokens[split_token_index])
                    segment_ids.append(0)

                tokens.append(end_token)
                boxes_tokens.append(sep_token_box)
                segment_ids.append(0)
                input_ids = tokenizer.convert_tokens_to_ids(tokens)
                # The mask has 1 for real tokens and 0 for padding tokens. Only real
                # tokens are attended to.
                input_mask = [1] * len(input_ids)
                # Zero-pad up to the sequence length.
                while len(input_ids) < max_seq_length:
                    input_ids.append(0)
                    input_mask.append(0)
                    segment_ids.append(0)
                    boxes_tokens.append(pad_token_box)
                assert len(input_ids) == max_seq_length
                assert len(input_mask) == max_seq_length
                assert len(segment_ids) == max_seq_length
                assert len(boxes_tokens) == max_seq_length

                spans_input_ids.append(input_ids)
                spans_input_mask.append(input_mask)
                spans_segment_ids.append(segment_ids)
                spans_boxes_tokens.append(boxes_tokens)

            # Padding
            # padding spans
            # max_span_num: max_seg_num
            # spans_input_ids: the tokens in each segment
            if len(spans_input_ids) > max_span_num:
                spans_input_ids = spans_input_ids[0:max_span_num]
                spans_input_mask = spans_input_mask[0:max_span_num]
                spans_segment_ids = spans_segment_ids[0:max_span_num]
                spans_boxes_tokens = spans_boxes_tokens[0:max_span_num]
            while len(spans_input_ids) < max_span_num:
                tokens = []
                boxes_tokens = []
                segment_ids = []
                tokens.append(start_token)
                boxes_tokens.append(cls_token_box)
                segment_ids.append(0)
                for token in query_tokens:
                    tokens.append(token)
                    boxes_tokens.append(ques_token_box)
                    segment_ids.append(0)
                tokens.append(end_token)
                boxes_tokens.append(sep_token_box)
                segment_ids.append(0)
                tokens.append(end_token)
                boxes_tokens.append(sep_token_box)
                segment_ids.append(0)
                input_ids = tokenizer.convert_tokens_to_ids(tokens)
                input_mask = [1] * len(input_ids)
                while len(input_ids) < max_seq_length:
                    input_ids.append(0)
                    input_mask.append(0)
                    segment_ids.append(0)
                    boxes_tokens.append(pad_token_box)
                spans_input_ids.append(input_ids)
                spans_input_mask.append(input_mask)
                spans_segment_ids.append(segment_ids)
                spans_boxes_tokens.append(boxes_tokens)

            # padding labels
            labels = example.labels
            sep_id = tokenizer.convert_tokens_to_ids(end_token)
            labels = ["O"] * (spans_input_ids[0].index(sep_id) + 1) + labels
            if len(labels) > 512:
                labels = labels[:512]

            if len(labels) < 512:
                labels += ["O"] * (512 - len(labels))
            assert len(spans_input_ids[0]) == len(labels)

            label_ids = []
            for lid, l in enumerate(labels):
                if l not in label_map:
                    label_ids.append(0)
                else:
                    label_ids.append(label_map[l])

            feature = DocVQAFeatures(
                example_index=example_index,
                input_ids=spans_input_ids,
                input_mask=spans_input_mask,
                segment_ids=spans_segment_ids,
                boxes=spans_boxes_tokens,
                label=label_ids,
            )
            features.append(feature)
        return features

    def create_examples(self, data, is_test=False):
        """Creates examples for the training and dev sets."""
        examples = []
        for sample in tqdm(data, total=len(data)):
            question = sample["question"]
            doc_tokens = sample["document"]
            doc_boxes = sample["document_bbox"]
            labels = sample["labels"] if not is_test else []

            x_min, y_min = min(doc_boxes, key=lambda x: x[0])[0], min(doc_boxes, key=lambda x: x[2])[2]
            x_max, y_max = max(doc_boxes, key=lambda x: x[1])[1], max(doc_boxes, key=lambda x: x[3])[3]
            width = x_max - x_min
            height = y_max - y_min

            if max(width, height) < 1000:
                scale_x = 1
                scale_y = 1
            else:
                scale_x = 1000 / max(width, height)
                scale_y = 1000 / max(width, height)

            scaled_doc_boxes = [
                [
                    round((b[0] - x_min) * scale_x),
                    round((b[2] - y_min) * scale_y),
                    round((b[1] - x_min) * scale_x),
                    round((b[3] - y_min) * scale_y),
                ]
                for b in doc_boxes
            ]

            for box, oribox in zip(scaled_doc_boxes, doc_boxes):
                if box[0] < 0:
                    print(box, oribox)
                if box[2] - box[0] < 0:
                    print(box, oribox)
                if box[3] - box[1] < 0:
                    print(box, oribox)
                for pos in box:
                    if pos > 1000:
                        print(width, height, box, oribox)

            example = DocVQAExample(
                question=question, doc_tokens=doc_tokens, doc_boxes=scaled_doc_boxes, labels=labels
            )
            examples.append(example)
        return examples

    def docvqa_input(self):
        data = []
        if self.args.do_train:
            dataset = self.args.train_file
        elif self.args.do_test:
            dataset = self.args.test_file
        with open(dataset, "r", encoding="utf8") as f:
            for index, line in enumerate(f):
                data.append(json.loads(line.strip()))

            # read the examples from train/test xlm files
            examples = self.create_examples(data, is_test=self.args.do_test)

        features = self.convert_examples_to_features(
            examples,
            self.tokenizer,
            self.label2id_map,
            max_seq_length=self.max_seq_len,
            max_doc_length=self.max_doc_length,
            max_span_num=self.max_span_num,
            max_query_length=self.max_query_length,
        )

        all_input_ids = paddle.to_tensor([f.input_ids for f in features], dtype="int64")
        all_input_mask = paddle.to_tensor([f.input_mask for f in features], dtype="int64")
        all_segment_ids = paddle.to_tensor([f.segment_ids for f in features], dtype="int64")
        all_bboxes = paddle.to_tensor([f.boxes for f in features], dtype="int64")
        all_labels = paddle.to_tensor([f.label for f in features], dtype="int64")
        self.sample_list = [
            np.array(all_input_ids),
            np.array(all_input_mask),
            np.array(all_segment_ids),
            np.array(all_bboxes),
            np.array(all_labels),
        ]

    def __getitem__(self, idx):
        return (
            self.sample_list[0][idx],
            self.sample_list[1][idx],
            self.sample_list[2][idx],
            self.sample_list[3][idx],
            self.sample_list[4][idx],
        )

    def __len__(
        self,
    ):
        return self.sample_list[0].shape[0]