llama_server.py 3.24 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import argparse
import torch
from utils import load_hyperparam, convert_normal_parameter_to_int8, load_model
from model.tokenize import Tokenizer
from model.llama import *
from generate import LmGeneration
from flask import Flask, request
import json

app = Flask(__name__)
args = None
lm_generation = None


def init_model():
    global args
    global lm_generation
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument("--load_model_path", default=None, type=str,
                        help="Path of the input model.")
    parser.add_argument("--config_path", type=str, required=True,
                        help="Path of the config file.")
    parser.add_argument("--batch_size", type=int, default=1,
                        help="Batch size.")
    parser.add_argument("--seq_length", type=int, default=128,
                        help="Sequence length.")
    parser.add_argument("--world_size", type=int, default=1,
                        help="the number of gpus.")
    parser.add_argument("--use_int8", action="store_true")
    parser.add_argument("--top_k", type=int, default=10)
    parser.add_argument("--top_p", type=float, default=1)
    parser.add_argument("--temperature", type=float, default=0.85)
    parser.add_argument("--repetition_penalty_range", type=int, default=1024)
    parser.add_argument("--repetition_penalty_slope", type=float, default=0)
    parser.add_argument("--repetition_penalty", type=float, default=1.15)

    parser.add_argument("--spm_model_path", default=None, type=str,
                        help="Path of the sentence piece model.")

    args = parser.parse_args()

    args = load_hyperparam(args)

    args.tokenizer = Tokenizer(model_path=args.spm_model_path)
    args.vocab_size = args.tokenizer.sp_model.vocab_size()

    torch.set_default_tensor_type(torch.HalfTensor)
    model = LLaMa(args)
    torch.set_default_tensor_type(torch.FloatTensor)
    model = load_model(model, args.load_model_path)
    model.eval()

    # use multi-gpu tensor parallel
    if args.world_size > 1:
        import tensor_parallel as tp
        gpus = ["cuda:" + str(i) for i in range(args.world_size)]
        if args.use_int8:
            model = tp.tensor_parallel(model, gpus, delay_init=True)
            model = convert_normal_parameter_to_int8(model)
        else:
            model = tp.tensor_parallel(model, gpus)
    else:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model.to(device)

    lm_generation = LmGeneration(model, args.tokenizer)


@app.route("/chat", methods=['POST'])
def chat():
    question = request.json.get("question")
    if isinstance(question, str):
        question = [question, ]
    try:
        with torch.no_grad():
            answer = lm_generation.generate(args, question)
        status = 'success'
    except Exception:
        answer = ''
        status = 'error'
    return json.dumps({'answer': answer, 'status': status}, ensure_ascii=False)


if __name__ == '__main__':
    init_model()
    # first pass on request to initialize int8.
    try:
        with torch.no_grad():
            answer = lm_generation.generate(args, ['hello world!'])
    except Exception:
        pass
    app.run(host='127.0.0.1', port=8888, debug=False)