generate.py 8.74 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import torch.nn.functional as F


def apply_temperature(scores, tempt):
    if tempt > 0:
        scores = scores / tempt
    return scores


def apply_top_p(scores, top_p, filter_value=-float("Inf"), min_tokens_to_keep=1):
    if top_p > 0 and top_p < 1:
        sorted_logits, sorted_indices = torch.sort(scores, descending=False)
        cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)

        # Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
        sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
        if min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep
            sorted_indices_to_remove[..., -min_tokens_to_keep:] = 0

        # scatter sorted tensors to original indexing
        indices_to_remove = sorted_indices_to_remove.scatter(
            1, sorted_indices, sorted_indices_to_remove
        )
        scores = scores.masked_fill(indices_to_remove, filter_value)
    return scores


def apply_top_k(logits, top_k):
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits.float(), top_k)[0][..., -1, None]
        logits[indices_to_remove] = -float("Inf")

    return logits

def apply_advanced_repetition_penalty(
    input_ids, scores, penalty_range, penalty_slope, penalty
):
    penalty_range = int(penalty_range)
    clipped_penalty_range = min(input_ids.shape[-1], penalty_range)

    if penalty != 1.0:
        if penalty_range > 0:
            if clipped_penalty_range < input_ids.shape[1]:
                input_ids = input_ids[..., -clipped_penalty_range:]

            if penalty_slope != 0:
                _penalty = (
                    torch.arange(
                        penalty_range, dtype=scores.dtype, device=scores.device
                    )
                    / (penalty_range - 1)
                ) * 2.0 - 1
                _penalty = (penalty_slope * _penalty) / (
                    1 + torch.abs(_penalty) * (penalty_slope - 1)
                )
                _penalty = 1 + ((_penalty + 1) / 2).unsqueeze(0) * (penalty - 1)
                penalty = _penalty[..., -clipped_penalty_range:]

        score = torch.gather(scores, 1, input_ids)
        score = torch.where(score <= 0, score * penalty, score / penalty)
        scores.scatter_(1, input_ids, score)

    return scores


class LmGeneration:
    def __init__(self, model, tokenizer):
        self.model = model
        self.tokenizer = tokenizer

    def generate(self, args, prompts, cut_off=None, cut_off_times=1):
        if cut_off is not None:
            cut_off_times = [cut_off_times for i in range(len(prompts))]
        batch = len(prompts)
        assert batch <= args.batch_size

        prompt_tokens = [args.tokenizer.encode(x, bos=True, eos=False) for x in prompts]

        min_prompt_len = min([len(x) for x in prompt_tokens])
        # max_prompt_len = max([len(x) for x in prompt_tokens])

        total_len = args.seq_length

        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        tokens = torch.full((batch, total_len), self.tokenizer.pad_id).to(device).long()
        for idx, t in enumerate(prompt_tokens):
            tokens[idx, : len(t)] = torch.tensor(t).long()
        mask = tokens != self.tokenizer.pad_id
        start_pos = min_prompt_len
        prev_pos = 0
        continue_exsample = [i for i in range(batch)]
        with torch.no_grad():
            for cur_pos in range(start_pos, total_len):
                logits = self.model.forward(tokens[continue_exsample, prev_pos:cur_pos], prev_pos, continue_exsample).float()
                next_token_scores = apply_top_k(logits, top_k=args.top_k)
                next_token_scores = apply_top_p(next_token_scores, args.top_p)
                next_token_scores = apply_temperature(next_token_scores, args.temperature)
                next_token_scores = apply_advanced_repetition_penalty(
                    tokens[continue_exsample, :cur_pos],
                    next_token_scores,
                    args.repetition_penalty_range,
                    args.repetition_penalty_slope,
                    args.repetition_penalty
                )
                scores = F.softmax(next_token_scores, dim=-1)
                next_token = torch.multinomial(scores, num_samples=1).squeeze(1)
                next_token = next_token.reshape(-1)
                next_token = torch.where(
                    mask[continue_exsample, cur_pos], tokens[continue_exsample, cur_pos], next_token
                )
                tokens[continue_exsample, cur_pos] = next_token
                prev_pos = cur_pos
                # remove eos examples.
                continue_exsample = []
                for i, t in enumerate(tokens.tolist()):
                    try:
                        t.index(self.tokenizer.eos_id)
                    except ValueError:
                        if cut_off is not None:
                            if cut_off == self.tokenizer.decode(t[:cur_pos + 1])[-len(cut_off):]:
                                if cut_off_times[i] == 1:
                                    continue
                                else:
                                    cut_off_times[i] -= 1
                        continue_exsample.append(i)
                if len(continue_exsample) == 0:
                    break

        decoder = []
        for i, t in enumerate(tokens.tolist()):
            t = t[: args.seq_length]
            try:
                t = t[: t.index(self.tokenizer.pad_id)]
                t = t[: t.index(self.tokenizer.eos_id)]
            except ValueError:
                pass
            decoder.append(self.tokenizer.decode(t))

        return decoder


class LmGeneration_test:
    def __init__(self, model, tokenizer):
        self.model = model
        self.tokenizer = tokenizer

    def generate(self, args, prompt_tokens, cut_off=None, cut_off_times=1):
        if cut_off is not None:
            cut_off_times = [cut_off_times for i in range(len(prompt_tokens))]
        batch = len(prompt_tokens)
        assert batch <= args.batch_size

        # prompt_tokens = [args.tokenizer.encode(x, bos=True, eos=False) for x in prompts]

        min_prompt_len = min([len(x) for x in prompt_tokens])
        # max_prompt_len = max([len(x) for x in prompt_tokens])

        total_len = args.seq_length
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        tokens = torch.full((batch, total_len), self.tokenizer.pad_id).to(device).long()
        for idx, t in enumerate(prompt_tokens):
            tokens[idx, : len(t)] = torch.tensor(t).long()
        mask = tokens != self.tokenizer.pad_id
        start_pos = min_prompt_len
        prev_pos = 0
        continue_exsample = [i for i in range(batch)]
        with torch.no_grad():
            for cur_pos in range(start_pos, total_len):
                logits = self.model.forward(tokens[continue_exsample, prev_pos:cur_pos], prev_pos, continue_exsample).float()
                next_token_scores = apply_top_k(logits, top_k=args.top_k)
                next_token_scores = apply_top_p(next_token_scores, args.top_p)
                next_token_scores = apply_temperature(next_token_scores, args.temperature)
                next_token_scores = apply_advanced_repetition_penalty(
                    tokens[continue_exsample, :cur_pos],
                    next_token_scores,
                    args.repetition_penalty_range,
                    args.repetition_penalty_slope,
                    args.repetition_penalty
                )
                scores = F.softmax(next_token_scores, dim=-1)
                next_token =  torch.multinomial(scores, num_samples=1).squeeze(1)
                next_token = next_token.reshape(-1)
                next_token = torch.where(
                    mask[continue_exsample, cur_pos], tokens[continue_exsample, cur_pos], next_token
                )
                tokens[continue_exsample, cur_pos] = next_token
                prev_pos = cur_pos
                # remove eos examples.
                continue_exsample = []
                for i, t in enumerate(tokens.tolist()):
                    try:
                        t.index(self.tokenizer.eos_id)
                    except ValueError:
                        if cut_off is not None:
                            if cut_off == self.tokenizer.decode(t[:cur_pos + 1])[-len(cut_off):]:
                                if cut_off_times[i] == 1:
                                    continue
                                else:
                                    cut_off_times[i] -= 1
                        continue_exsample.append(i)
                if len(continue_exsample) == 0:
                    break
        return tokens