llama_example.cc 21.9 KB
Newer Older
zhuwenwen's avatar
zhuwenwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/*
 * Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "3rdparty/INIReader.h"
#include "examples/cpp/multi_gpu_gpt/gpt_example_utils.h"
#include "src/fastertransformer/models/llama/Llama.h"
#include "src/fastertransformer/utils/mpi_utils.h"
#include "src/fastertransformer/utils/nccl_utils.h"
#include "src/fastertransformer/utils/nvtx_utils.h"
#include "src/fastertransformer/utils/word_list.h"

#include <cuda_profiler_api.h>
#include <fstream>
#include <sstream>
#include <string>
#include <sys/time.h>
#include <vector>

using namespace fastertransformer;

template<typename T>
void llama_example(const INIReader reader);

int main(int argc, char* argv[])
{
    mpi::initialize(&argc, &argv);
    srand(0);

    std::string ini_name;
    if (argc == 2) {
        ini_name = std::string(argv[1]);
    }
    else {
        ini_name = "../examples/cpp/llama/llama_config.ini";
    }

    INIReader reader = INIReader(ini_name);
    if (reader.ParseError() < 0) {
        std::cout << "[ERROR] Can't load '" << ini_name << "'\n";
        return -1;
    }
    const std::string data_type = reader.Get("ft_instance_hyperparameter", "data_type");

    if (data_type == "fp32") {
        llama_example<float>(reader);
    }
    else if (data_type == "fp16") {
        llama_example<half>(reader);
    }
#ifdef ENABLE_BF16
    else if (data_type == "bf16") {
        llama_example<__nv_bfloat16>(reader);
    }
#endif
    else {
        FT_LOG_ERROR("is_fp16 should be 0 (use float) or 1 (use half).");
        return -1;
    }
    mpi::finalize();
    return 0;
}

template<typename T>
void llama_example(const INIReader reader)
{
    const std::string model_name = reader.Get("ft_instance_hyperparameter", "model_name");
    std::string       model_dir  = std::string(reader.Get("ft_instance_hyperparameter", "model_dir"));

    int tensor_para_size   = reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size");
    int pipeline_para_size = reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size");
    int int8_mode  = reader.GetInteger("ft_instance_hyperparameter", "int8_mode", 0);

    const size_t head_num             = reader.GetInteger(model_name, "head_num");
    const size_t size_per_head        = reader.GetInteger(model_name, "size_per_head");
    const size_t vocab_size           = reader.GetInteger(model_name, "vocab_size");
    const size_t decoder_layers       = reader.GetInteger(model_name, "num_layer");
    const size_t rotary_embedding_dim = reader.GetInteger(model_name, "rotary_embedding");
    const float  layernorm_eps        = reader.GetFloat(model_name, "layernorm_eps");
    const int    start_id             = reader.GetInteger(model_name, "start_id");
    const int    end_id               = reader.GetInteger(model_name, "end_id");

    const size_t hidden_units = head_num * size_per_head;
    const size_t inter_size   = reader.GetInteger(model_name, "inter_size");

    const size_t beam_width                 = reader.GetInteger("request", "beam_width");
    const uint   top_k                      = (uint)reader.GetInteger("request", "top_k");
    const float  top_p                      = reader.GetFloat("request", "top_p");
    const float  temperature                = reader.GetFloat("request", "temperature");
    const float  repetition_penalty         = reader.GetFloat("request", "repetition_penalty", 1.0f);
    const float  presence_penalty           = reader.GetFloat("request", "presence_penalty", 0.0f);
    const float  len_penalty                = reader.GetFloat("request", "len_penalty");
    const float  beam_search_diversity_rate = reader.GetFloat("request", "beam_search_diversity_rate");
    const int    min_length                 = reader.GetInteger("request", "min_length", 0);
    // const size_t request_batch_size         = 1; // reader.GetInteger("request", "request_batch_size");
    const size_t request_batch_size         = reader.GetInteger("request", "request_batch_size");
    // The length of tokens we hope this model to generate
    const int request_output_len = reader.GetInteger("request", "request_output_len");

    FT_CHECK(head_num % tensor_para_size == 0);
    FT_CHECK(decoder_layers % pipeline_para_size == 0);
    FT_CHECK_WITH_INFO(
        repetition_penalty == 1.0f || presence_penalty == 0.0f,
        fmtstr("Found ambiguous parameters repetition_penalty (%f) and presence_penalty (%f) "
               "which are mutually exclusive. Please remove one of repetition_penalty or presence_penalty "
               "or set to a default value.",
               repetition_penalty,
               presence_penalty));

    // Prepare the parallelism parameters
    int rank       = mpi::getCommWorldRank();
    int world_size = mpi::getCommWorldSize();
    if (rank == 0) {
        printf("Total ranks: %d.\n", world_size);
    }
    int device, device_count;
    check_cuda_error(cudaGetDeviceCount(&device_count));
    check_cuda_error(cudaSetDevice(rank % device_count));
    check_cuda_error(cudaGetDevice(&device));

    struct cudaDeviceProp prop;
    check_cuda_error(cudaGetDeviceProperties(&prop, device));
    printf("Device %s\n", prop.name);

    printf("P%d is running with GPU #%d.\n", rank, device);
    if (tensor_para_size * pipeline_para_size != world_size) {
        if (world_size % pipeline_para_size) {
            printf("[ERROR] tensor_para_size * pipeline_para_size should equal to world_size \n");
            exit(-1);
        }
        tensor_para_size = world_size / pipeline_para_size;
        printf("[INFO] Setting tensor_para_size to %d \n", tensor_para_size);
    }

    const int layers_per_group = decoder_layers / pipeline_para_size;
    if (layers_per_group * pipeline_para_size != (int)decoder_layers) {
        printf("[ERROR] layers_per_group (%d) * pipeline_para_size (%d) should equal to decoder_layers (%ld) \n",
               layers_per_group,
               pipeline_para_size,
               decoder_layers);
        exit(-1);
    }

    // assume gpu_num = k * n,
    // tensor parallelism group size is n
    // pipeline parallelism group size is k
    NcclParam tensor_para;
    NcclParam pipeline_para;
    ftNcclInitialize(tensor_para, pipeline_para, tensor_para_size, pipeline_para_size);

    // Handle bad_words dictionary
    std::vector<int> bad_words;
    read_word_list("../examples/cpp/llama/bad_words.csv", bad_words);

    int* d_bad_words = nullptr;
    deviceMalloc(&d_bad_words, bad_words.size(), false);
    cudaH2Dcpy(d_bad_words, bad_words.data(), bad_words.size());

    // Handle stop_words dictionary
    std::vector<int> stop_words;
    read_word_list("../examples/cpp/llama/stop_words.csv", stop_words);

    const size_t stop_words_len = stop_words.size() / 2;
    // Tile with same dict for each element
    std::vector<int> tiled_stop_words;
    for (int i = 0; i < request_batch_size; i++) {
        tiled_stop_words.insert(tiled_stop_words.end(), stop_words.begin(), stop_words.end());
    }

    
    int* d_stop_words = nullptr;
    deviceMalloc(&d_stop_words, tiled_stop_words.size(), false);
    cudaH2Dcpy(d_stop_words, tiled_stop_words.data(), tiled_stop_words.size());

    // Read ids of request from file.
    size_t           max_input_len = -1;
    std::vector<int> v_start_lengths;
    std::vector<int> v_start_ids;
    read_start_ids(request_batch_size,
                   &v_start_lengths,
                   &v_start_ids,
                   max_input_len,
                   end_id,
                   1,
                   "../examples/cpp/llama/start_ids.csv");


    int* d_input_ids;
    int* d_input_lengths;
    if (max_input_len == 0) {
        // unconditional case, no input ids, so do nothing.
        d_input_ids     = nullptr;
        d_input_lengths = nullptr;
    }
    else {
        // conditional case.
        deviceMalloc(&d_input_ids, request_batch_size * max_input_len, false);
        deviceMalloc(&d_input_lengths, request_batch_size, false);
        cudaH2Dcpy(d_input_ids, v_start_ids.data(), request_batch_size * max_input_len);
        cudaH2Dcpy(d_input_lengths, v_start_lengths.data(), request_batch_size);
    }
    std::vector<int> start_ids(request_batch_size, start_id);
    std::vector<int> end_ids(request_batch_size, end_id);

    // Prompt Learning Configurations
    // NOTE: if you don't need prefix prompts, remember to set max_prefix_len to 0 and others to nullptr
    int prompt_learning_start_id = reader.GetInteger(model_name, "prompt_learning_start_id", end_id + 1);
    fastertransformer::PromptLearningType prompt_learning_type =
        static_cast<fastertransformer::PromptLearningType>(reader.GetInteger(model_name, "prompt_learning_type", 0));

    // NOTE: specify task names, take name id, prompt length in order to load those prompt learning tables.
    // NOTE: Please make sure task ids are continuous and start from 0
    // for example:
    // std::map<std::string, std::pair<int, int>> prefix_prompt_table_pair{{"no_prompt", {0, 0}},
    //                                                                     {"prompt_1", {1, 1}},
    //                                                                     {"prompt_2", {2, 2}},
    //                                                                     {"prompt_3", {3, 3}},
    //                                                                     {"prompt_4", {4, 4}},
    //                                                                     {"prompt_5", {5, 5}}};

    std::map<std::string, std::pair<int, int>> prefix_prompt_table_pair;

    // NOTE: get prompt table pairs from configuration files
    const int num_tasks = reader.GetInteger(model_name, "num_tasks", 0);
    for (int task_name_id = 0; task_name_id < num_tasks; task_name_id++) {
        std::string config_task_name = model_name + "_task_" + std::to_string(task_name_id);
        std::string task_name        = reader.Get(config_task_name, "task_name");
        const int   prompt_length    = reader.GetInteger(config_task_name, "prompt_length", 0);
        prefix_prompt_table_pair.insert({task_name, {task_name_id, prompt_length}});
    }

    // NOTE: task_name_ids for each sequence in one batch
    // Each sequence can have different prompt learning task ids
    std::vector<int> prefix_prompt_task_ids(request_batch_size, 0);

    // Set different task ids
    for (int i = 0; i < request_batch_size; i++) {
        prefix_prompt_task_ids[i] = (num_tasks > 0) ? i % num_tasks : 0;
    }

    const int total_output_len = max_input_len + request_output_len;

    cudaStream_t     stream;
    cublasHandle_t   cublas_handle;
    cublasLtHandle_t cublaslt_handle;
    cudaStreamCreate(&stream);
    cublasCreate(&cublas_handle);
    cublasLtCreate(&cublaslt_handle);
    cublasSetStream(cublas_handle, stream);
    cublasAlgoMap* cublas_algo_map = new cublasAlgoMap("gemm_config.in");

    Allocator<AllocatorType::CUDA> allocator(getDevice());

    std::mutex*     cublas_wrapper_mutex = new std::mutex();
    cublasMMWrapper cublas_wrapper =
        cublasMMWrapper(cublas_handle, cublaslt_handle, stream, cublas_algo_map, cublas_wrapper_mutex, &allocator);
    if (std::is_same<T, half>::value) {
        cublas_wrapper.setGemmConfig(CUDA_R_16F, CUDA_R_16F, CUDA_R_16F, CUDA_R_16F);
    }
#ifdef ENABLE_BF16
    else if (std::is_same<T, __nv_bfloat16>::value) {
        cublas_wrapper.setBF16GemmConfig();
    }
#endif
    else if (std::is_same<T, float>::value) {
        cublas_wrapper.setFP32GemmConfig();
    }

    const bool                          use_gptj_residual = false;
    fastertransformer::LlamaWeight<T> gpt_weights(hidden_units,
                                                  inter_size,
                                                  vocab_size,
                                                  decoder_layers,
                                                  0,  // max_seq_len, deprecated
                                                  tensor_para.world_size_,
                                                  tensor_para.rank_,
                                                  pipeline_para.world_size_,
                                                  pipeline_para.rank_,
                                                  use_gptj_residual,
                                                  int8_mode,
                                                  prompt_learning_type,
                                                  prefix_prompt_table_pair);

    gpt_weights.loadModel(model_dir);
    unsigned long long random_seed;
    if (rank == 0) {
        random_seed = (unsigned long long)(0);
    }
    if (world_size > 1) {
        mpi::bcast(&random_seed, 1, mpi::MPI_TYPE_UNSIGNED_LONG_LONG, 0, mpi::COMM_WORLD);
    }

    AttentionType attention_type = getAttentionType<T>(size_per_head,
                                                       getSMVersion(),
                                                       true,   // remove_padding
                                                       0,      // gpt supports any-seq-length fmha
                                                       true,   // is_fuse
                                                       false,  // with_relative_position_bias
                                                       true);  // causal_mask

    Llama<T> gpt = Llama<T>(head_num,
                            size_per_head,
                            inter_size,
                            decoder_layers,
                            vocab_size,
                            rotary_embedding_dim,
                            layernorm_eps,
                            start_id,
                            end_id,
                            prompt_learning_start_id,
                            prompt_learning_type,
                            use_gptj_residual,
                            0.0f,
                            top_k,
                            top_p,
                            random_seed,
                            temperature,
                            len_penalty,
                            repetition_penalty,
                            tensor_para,
                            pipeline_para,
                            stream,
                            &cublas_wrapper,
                            &allocator,
                            false,
                            &prop,
                            attention_type,
                            int8_mode,
                            nullptr,
                            0,
                            1.0f);

    int* d_output_ids;
    int* d_sequence_lengths;


    deviceMalloc(&d_output_ids, request_batch_size * beam_width * total_output_len, false);
    deviceMalloc(&d_sequence_lengths, request_batch_size * beam_width, false);

    std::vector<uint32_t>                   output_seq_len(request_batch_size, total_output_len);
    std::unordered_map<std::string, Tensor> input_tensors = std::unordered_map<std::string, Tensor>{
        {"input_ids",
         Tensor{MEMORY_GPU, TYPE_INT32, std::vector<size_t>{request_batch_size, (size_t)max_input_len}, d_input_ids}},
        {"input_lengths", Tensor{MEMORY_GPU, TYPE_INT32, std::vector<size_t>{request_batch_size}, d_input_lengths}},
        // NOTE: if you need prefix prompts, remember to add prefix_prompt_task_ids here
        // {"prompt_learning_task_name_ids", Tensor{MEMORY_CPU, TYPE_INT32, std::vector<size_t>{request_batch_size},
        // prefix_prompt_task_ids.data()}},
        {"output_seq_len",
         Tensor{MEMORY_CPU, TYPE_UINT32, std::vector<size_t>{request_batch_size}, output_seq_len.data()}},
        {"bad_words_list", Tensor{MEMORY_GPU, TYPE_INT32, {2, bad_words.size() / 2}, d_bad_words}},
        {"stop_words_list", Tensor{MEMORY_GPU, TYPE_INT32, {request_batch_size, 2, stop_words_len}, d_stop_words}},
        {"temperature", Tensor{MEMORY_CPU, TYPE_FP32, std::vector<size_t>{1}, &temperature}},
        {"len_penalty", Tensor{MEMORY_CPU, TYPE_FP32, std::vector<size_t>{1}, &len_penalty}},
        {"min_length", Tensor{MEMORY_CPU, TYPE_INT32, std::vector<size_t>{1}, &min_length}},
        {"start_id", Tensor{MEMORY_CPU, TYPE_INT32, std::vector<size_t>{request_batch_size}, start_ids.data()}},
        {"end_id", Tensor{MEMORY_CPU, TYPE_INT32, std::vector<size_t>{request_batch_size}, end_ids.data()}}};

    if (repetition_penalty != 1.0f) {
        input_tensors.insert(
            {"repetition_penalty", Tensor{MEMORY_CPU, TYPE_FP32, std::vector<size_t>{1}, &repetition_penalty}});
    }
    if (presence_penalty != 0.0f) {
        input_tensors.insert(
            {"presence_penalty", Tensor{MEMORY_CPU, TYPE_FP32, std::vector<size_t>{1}, &presence_penalty}});
    }

    if (num_tasks > 0) {
        // Prefix Prompt Task Name Ids here
        input_tensors.insert(
            {"prompt_learning_task_name_ids",
             Tensor{MEMORY_CPU, TYPE_INT32, std::vector<size_t>{request_batch_size}, prefix_prompt_task_ids.data()}});
    }

    if (top_k == 0 && top_p == 0.0f) {
        FT_CHECK(beam_width > 1);
        input_tensors.insert({"beam_search_diversity_rate",
                              Tensor{MEMORY_CPU, TYPE_FP32, std::vector<size_t>{1}, &beam_search_diversity_rate}});
    }
    else {
        input_tensors.insert({"random_seed", Tensor{MEMORY_CPU, TYPE_UINT64, std::vector<size_t>{1}, &random_seed}});
        if (top_p != 0.0f) {
            input_tensors.insert({"runtime_top_p", Tensor{MEMORY_CPU, TYPE_FP32, std::vector<size_t>{1}, &top_p}});
        }
        if (top_k != 0) {
            input_tensors.insert({"runtime_top_k", Tensor{MEMORY_CPU, TYPE_UINT32, std::vector<size_t>{1}, &top_k}});
        }
    }

    std::unordered_map<std::string, Tensor> output_tensors = std::unordered_map<std::string, Tensor>{
        {"output_ids",
         Tensor{MEMORY_GPU,
                TYPE_INT32,
                std::vector<size_t>{request_batch_size, beam_width, (size_t)total_output_len},
                d_output_ids}},
        {"sequence_length",
         Tensor{MEMORY_GPU, TYPE_INT32, std::vector<size_t>{request_batch_size, beam_width}, d_sequence_lengths}},
        {"output_log_probs",
         Tensor{MEMORY_GPU,
                TYPE_FP32,
                std::vector<size_t>{(size_t)request_output_len, request_batch_size, beam_width},
                nullptr}}};

    print_mem_usage();

    int ite = 1;
    cudaDeviceSynchronize();
    mpi::barrier();

    cudaProfilerStart();
    // warm up
    ite = 1;
    ft_nvtx::setScope("warmup_time");
    // PUSH_RANGE("warmup time")

    for (int i = 0; i < ite; ++i) {
        gpt.forward(&output_tensors, &input_tensors, &gpt_weights);
    }
    print_mem_usage("After inference");

    cudaDeviceSynchronize();
    mpi::barrier();

    // POP_RANGE;
    ft_nvtx::resetScope();


    if (rank == 0) {

        std::string fName   = "out";
        auto        outFile = std::ofstream(fName, std::ios::out);
        if (!outFile.is_open()) {
            printf("[WARNING] Cannot write results into output file %s \n", fName.c_str());
        }
        else {
            size_t outCount = total_output_len * request_batch_size * beam_width;
            int*   hBuf     = new int[outCount];

            cudaD2Hcpy(hBuf, d_output_ids, outCount);

            {
                std::cout << "Writing " << outCount << " elements\n";
                int zeroCount = 0;
                for (size_t i = 0; i < outCount; i++) {
                    if (hBuf[i] == int(0)) {
                        zeroCount++;
                    }
                    outFile << hBuf[i] << " ";
                    if ((i + 1) % (total_output_len) == 0) {
                        outFile << std::endl;
                    }

                    if (i < 10) {
                        printf("%5d ", hBuf[i]);
                    }
                    if ((i + 1) % (total_output_len) == 0 && i < 10) {
                        std::cout << std::endl;
                    }
                }
                std::cout << std::endl << "zeroCount = " << zeroCount << std::endl;
            }
            delete[] hBuf;
        }
    }

    // test time
    struct timeval start, end;
    mpi::barrier();
    cudaDeviceSynchronize();
    gettimeofday(&start, NULL);

    ft_nvtx::setScope("total_time");
    // PUSH_RANGE("total time")
    for (int i = 0; i < ite; ++i) {
        gpt.forward(&output_tensors, &input_tensors, &gpt_weights);
    }
    cudaDeviceSynchronize();
    mpi::barrier();

    // POP_RANGE;
    ft_nvtx::resetScope();
    gettimeofday(&end, NULL);

    cudaProfilerStop();

    printf("[INFO] request_batch_size %ld beam_width %ld head_num %ld size_per_head %ld total_output_len %d"
           " decoder_layers %ld vocab_size %ld FT-CPP-decoding-beamsearch-time %.2f ms\n",
           request_batch_size,
           beam_width,
           head_num,
           size_per_head,
           total_output_len,
           decoder_layers,
           vocab_size,
           ((end.tv_sec - start.tv_sec) * 1000 + (end.tv_usec - start.tv_usec) * 0.001) / ite);

zhuwenwen's avatar
zhuwenwen committed
508
509
510
    // float total_time;
    // total_time = ((end.tv_sec - start.tv_sec) * 1000 + (end.tv_usec - start.tv_usec) * 0.001) / ite / 1000;
    // printf("[INFO] performance: %.2f tokens/sec \n", (request_batch_size * request_output_len) / total_time);
zhuwenwen's avatar
zhuwenwen committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

    ftNcclParamDestroy(tensor_para);
    ftNcclParamDestroy(pipeline_para);

    delete cublas_algo_map;
    delete cublas_wrapper_mutex;

    cudaFree(d_bad_words);
    cudaFree(d_stop_words);
    if (d_input_ids != nullptr) {
        cudaFree(d_input_ids);
    }
    if (d_input_lengths != nullptr) {
        cudaFree(d_input_lengths);
    }
    if (d_output_ids != nullptr) {
        deviceFree(d_output_ids);
    }
    if (d_sequence_lengths != nullptr) {
        deviceFree(d_sequence_lengths);
    }
    return;
}