device_spmv.cuh 7.92 KB
Newer Older
zhuwenwen's avatar
zhuwenwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/******************************************************************************
 * Copyright (c) 2010-2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 * Modifications Copyright (c) 2017-2021, Advanced Micro Devices, Inc.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

#ifndef HIPCUB_ROCPRIM_DEVICE_DEVICE_SPMV_HPP_
#define HIPCUB_ROCPRIM_DEVICE_DEVICE_SPMV_HPP_

#include "../config.hpp"

#include "../iterator/tex_ref_input_iterator.cuh"

BEGIN_HIPCUB_NAMESPACE

class DeviceSpmv
{

public:

template <
    typename        ValueT,              ///< Matrix and vector value type
    typename        OffsetT>             ///< Signed integer type for sequence offsets
struct SpmvParams
{
    ValueT*         d_values;            ///< Pointer to the array of \p num_nonzeros values of the corresponding nonzero elements of matrix <b>A</b>.
    OffsetT*        d_row_end_offsets;   ///< Pointer to the array of \p m offsets demarcating the end of every row in \p d_column_indices and \p d_values
    OffsetT*        d_column_indices;    ///< Pointer to the array of \p num_nonzeros column-indices of the corresponding nonzero elements of matrix <b>A</b>.  (Indices are zero-valued.)
    ValueT*         d_vector_x;          ///< Pointer to the array of \p num_cols values corresponding to the dense input vector <em>x</em>
    ValueT*         d_vector_y;          ///< Pointer to the array of \p num_rows values corresponding to the dense output vector <em>y</em>
    int             num_rows;            ///< Number of rows of matrix <b>A</b>.
    int             num_cols;            ///< Number of columns of matrix <b>A</b>.
    int             num_nonzeros;        ///< Number of nonzero elements of matrix <b>A</b>.
    ValueT          alpha;               ///< Alpha multiplicand
    ValueT          beta;                ///< Beta addend-multiplicand

    ::cub::TexRefInputIterator<ValueT, 66778899, OffsetT>  t_vector_x;
};

static constexpr uint32_t CsrMVKernel_MaxThreads = 256;

template <typename ValueT>
static __global__ void
CsrMVKernel(SpmvParams<ValueT, int> spmv_params)
{
    __shared__ ValueT partial;

    const int32_t row_id = hipBlockIdx_x;

    if(threadIdx.x == 0)
    {
        partial = spmv_params.beta * spmv_params.d_vector_y[row_id];
    }
    __syncthreads();

    int32_t row_offset = (row_id == 0) ? (0) : (spmv_params.d_row_end_offsets[row_id - 1]);
    for(uint32_t thread_offset = 0; thread_offset < spmv_params.num_cols / blockDim.x; thread_offset++)
    {
        int32_t offset = row_offset + thread_offset * blockDim.x + threadIdx.x;

        if(offset < spmv_params.d_row_end_offsets[row_id])
        {
            ValueT t_value =
                spmv_params.alpha *
                spmv_params.d_values[offset] *
                spmv_params.d_vector_x[spmv_params.d_column_indices[offset]];

            atomicAdd(&partial, t_value);

            __syncthreads();

            iif(threadIdx.x == 0)
            {
                spmv_params.d_vector_y[row_id] = partial;
            }
        }
    }
}

template <typename ValueT>
    HIPCUB_RUNTIME_FUNCTION
    static cudaError_t CsrMV(
        void*               d_temp_storage,                     ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t&             temp_storage_bytes,                 ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        ValueT*             d_values,                           ///< [in] Pointer to the array of \p num_nonzeros values of the corresponding nonzero elements of matrix <b>A</b>.
        int*                d_row_offsets,                      ///< [in] Pointer to the array of \p m + 1 offsets demarcating the start of every row in \p d_column_indices and \p d_values (with the final entry being equal to \p num_nonzeros)
        int*                d_column_indices,                   ///< [in] Pointer to the array of \p num_nonzeros column-indices of the corresponding nonzero elements of matrix <b>A</b>.  (Indices are zero-valued.)
        ValueT*             d_vector_x,                         ///< [in] Pointer to the array of \p num_cols values corresponding to the dense input vector <em>x</em>
        ValueT*             d_vector_y,                         ///< [out] Pointer to the array of \p num_rows values corresponding to the dense output vector <em>y</em>
        int                 num_rows,                           ///< [in] number of rows of matrix <b>A</b>.
        int                 num_cols,                           ///< [in] number of columns of matrix <b>A</b>.
        int                 num_nonzeros,                       ///< [in] number of nonzero elements of matrix <b>A</b>.
        cudaStream_t         stream                  = 0,        ///< [in] <b>[optional]</b> hip stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                debug_synchronous       = false)    ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  May cause significant slowdown.  Default is \p false.
    {
        SpmvParams<ValueT, int> spmv_params;
        spmv_params.d_values             = d_values;
        spmv_params.d_row_end_offsets    = d_row_offsets + 1;
        spmv_params.d_column_indices     = d_column_indices;
        spmv_params.d_vector_x           = d_vector_x;
        spmv_params.d_vector_y           = d_vector_y;
        spmv_params.num_rows             = num_rows;
        spmv_params.num_cols             = num_cols;
        spmv_params.num_nonzeros         = num_nonzeros;
        spmv_params.alpha                = 1.0;
        spmv_params.beta                 = 0.0;

        cudaError_t status;
        if(d_temp_storage == nullptr)
        {
            // Make sure user won't try to allocate 0 bytes memory, because
            // hipMalloc will return nullptr when size is zero.
            temp_storage_bytes = 4;
            return cudaError_t(0);
        }
        else
        {
            size_t block_size = min(num_cols, DeviceSpmv::CsrMVKernel_MaxThreads);
            size_t grid_size = num_rows;
            CsrMVKernel<<<grid_size, block_size, 0, stream>>>(spmv_params);
            status = hipGetLastError();
        }
        return status;
    }
};

END_HIPCUB_NAMESPACE

#endif // HIPCUB_CUB_DEVICE_DEVICE_SELECT_HPP_