inference.py 5.91 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""Inference for FastChat models."""
import abc
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer, AutoModel

from fastchat.conversation import conv_templates, SeparatorStyle
from fastchat.serve.compression import compress_module
from fastchat.serve.monkey_patch_non_inplace import replace_llama_attn_with_non_inplace_operations
from fastchat.serve.serve_chatglm import chatglm_generate_stream


def load_model(model_name, device, num_gpus, load_8bit=False, debug=False):
    if device == "cpu":
        kwargs = {}
    elif device == "cuda":
        kwargs = {"torch_dtype": torch.float16}
        if num_gpus == "auto":
            kwargs["device_map"] = "auto"
        else:
            num_gpus = int(num_gpus)
            if num_gpus != 1:
                kwargs.update({
                    "device_map": "auto",
                    "max_memory": {i: "13GiB" for i in range(num_gpus)},
                })
    elif device == "mps":
        kwargs = {"torch_dtype": torch.float16}
        # Avoid bugs in mps backend by not using in-place operations.
        replace_llama_attn_with_non_inplace_operations()
    else:
        raise ValueError(f"Invalid device: {device}")

    if "chatglm" in model_name:
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half().cuda()
    else:
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
        model = AutoModelForCausalLM.from_pretrained(model_name,
            low_cpu_mem_usage=True, **kwargs)

    if load_8bit:
        compress_module(model, device)

    if (device == "cuda" and num_gpus == 1) or device == "mps":
        model.to(device)

    if debug:
        print(model)

    return model, tokenizer


@torch.inference_mode()
def generate_stream(model, tokenizer, params, device,
                    context_len=2048, stream_interval=2):
    prompt = params["prompt"]
    l_prompt = len(prompt)
    temperature = float(params.get("temperature", 1.0))
    max_new_tokens = int(params.get("max_new_tokens", 256))
    stop_str = params.get("stop", None)

    input_ids = tokenizer(prompt).input_ids
    output_ids = list(input_ids)

    max_src_len = context_len - max_new_tokens - 8
    input_ids = input_ids[-max_src_len:]

    for i in range(max_new_tokens):
        if i == 0:
            out = model(
                torch.as_tensor([input_ids], device=device), use_cache=True)
            logits = out.logits
            past_key_values = out.past_key_values
        else:
            attention_mask = torch.ones(
                1, past_key_values[0][0].shape[-2] + 1, device=device)
            out = model(input_ids=torch.as_tensor([[token]], device=device),
                        use_cache=True,
                        attention_mask=attention_mask,
                        past_key_values=past_key_values)
            logits = out.logits
            past_key_values = out.past_key_values

        last_token_logits = logits[0][-1]

        if device == "mps":
            # Switch to CPU by avoiding some bugs in mps backend.
            last_token_logits = last_token_logits.float().to("cpu")

        if temperature < 1e-4:
            token = int(torch.argmax(last_token_logits))
        else:
            probs = torch.softmax(last_token_logits / temperature, dim=-1)
            token = int(torch.multinomial(probs, num_samples=1))

        output_ids.append(token)

        if token == tokenizer.eos_token_id:
            stopped = True
        else:
            stopped = False

        if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
            output = tokenizer.decode(output_ids, skip_special_tokens=True)
            pos = output.rfind(stop_str, l_prompt)
            if pos != -1:
                output = output[:pos]
                stopped = True
            yield output

        if stopped:
            break

    del past_key_values


class ChatIO(abc.ABC):
    @abc.abstractmethod
    def prompt_for_input(self, role: str) -> str:
        """Prompt for input from a role."""

    @abc.abstractmethod
    def prompt_for_output(self, role: str):
        """Prompt for output from a role."""

    @abc.abstractmethod
    def stream_output(self, output_stream, skip_echo_len: int):
        """Stream output."""


def chat_loop(model_name: str, device: str, num_gpus: str, load_8bit: bool,
              conv_template: str, temperature: float, max_new_tokens: int,
              chatio: ChatIO, debug: bool):
    # Model
    model, tokenizer = load_model(model_name, device,
        num_gpus, load_8bit, debug)
    is_chatglm = "chatglm" in str(type(model)).lower()

    # Chat
    conv = conv_templates[conv_template].copy()
    while True:
        try:
            inp = chatio.prompt_for_input(conv.roles[0])
        except EOFError:
            inp = ""
        if not inp:
            print("exit...")
            break

        conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], None)

        if is_chatglm:
            prompt = conv.messages[conv.offset:]
            generate_stream_func = chatglm_generate_stream
            skip_echo_len = len(conv.messages[-2][1]) + 1
        else:
            generate_stream_func = generate_stream
            prompt = conv.get_prompt()
            skip_echo_len = len(prompt) + 1

        params = {
            "model": model_name,
            "prompt": prompt,
            "temperature": temperature,
            "max_new_tokens": max_new_tokens,
            "stop": conv.sep if conv.sep_style == SeparatorStyle.SINGLE else conv.sep2,
        }

        chatio.prompt_for_output(conv.roles[1])
        output_stream = generate_stream_func(model, tokenizer, params, device)
        outputs = chatio.stream_output(output_stream, skip_echo_len)
        conv.messages[-1][-1] = " ".join(outputs)

        if debug:
            print("\n", {"prompt": prompt, "outputs": outputs}, "\n")